Меха́ника — раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними; при этом движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.
Класси́ческая меха́ника — вид механики, основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «нью́тоновой меха́никой».
Ма́сса — скалярная физическая величина, определяющая инерционные и гравитационные свойства тел в ситуациях, когда их скорость намного меньше скорости света. В обыденной жизни и в физике XIX века масса синонимична весу.
Специа́льная тео́рия относи́тельности — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. Фактически СТО описывает геометрию четырёхмерного пространства-времени и основана на плоском пространстве Минковского. Обобщение СТО для сильных гравитационных полей называется общей теорией относительности.
Вре́мя — форма протекания физических и психических процессов, условие возможности изменения. Одно из основных понятий философии и физики, мерило длительности существования всех объектов, характеристика последовательной смены их состояний в процессах и самих процессов, изменения и развития, а также одна из координат единого пространства-времени, представления о котором развиваются в теории относительности.
Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. Основной закон динамики.
При́нцип наиме́ньшего де́йствия Га́мильтона, также просто принцип Гамильтона — способ получения уравнений движения физической системы при помощи поиска стационарного значения специального функционала — действия. Назван в честь Уильяма Гамильтона, использовавшего этот принцип для построения так называемого гамильтонова формализма в классической механике.
Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой все свободные тела движутся прямолинейно и равномерно либо покоятся. Существование систем, обладающих указанным свойством, постулируется первым законом Ньютона. Эквивалентное определение, удобное для использования в теоретической механике, звучит: «Инерциальной называется система отсчёта, по отношению к которой пространство является однородным и изотропным, а время — однородным». Экспериментальные факты свидетельствует о наличии систем с убедительной точностью близких к ИСО.
И́мпульс — векторная физическая величина, являющаяся мерой механического движения тела.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Уровни Ландау — энергетические уровни заряженной частицы в магнитном поле. Впервые получены как решение уравнения Шрёдингера для электрона в магнитном поле Л. Д. Ландау в 1930 году. Решением этой задачи являются собственные значения и собственные функции гамильтониана квантового гармонического осциллятора. Уровни Ландау играют существенную роль в кинетических и термодинамических явлениях в присутствии сильного магнитного поля.
Зако́н сохране́ния и́мпульса — закон, утверждающий, что сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю.
Эта статья включает описание термина «энергия покоя»
Курс теоретической физики — цикл учебных пособий по теоретической физике. Авторами всех томов, кроме 4-го, 9-го и 10-го, являются Л. Д. Ландау и Е. М. Лифшиц. Кроме Л. Д. Ландау и Е. М. Лифшица, авторами отдельных томов являются В. Б. Берестецкий и Л. П. Питаевский. В томах, где имя Л. Д. Ландау отсутствует среди фактических авторов, отмечается, что ему лично или ему с учениками принадлежит значительная доля излагаемых там результатов, а также сам общий стиль изложения материала.
Парадокс Эренфеста — мысленный эксперимент, рассматривающий диск, вращающийся с околосветовой скоростью.
T-симме́три́я — симметрия уравнений, описывающих законы физики, по отношению к операции замены времени t на −t. В квантовой механике математически записывается, как равенство нулю коммутатора оператора Гамильтона и антиунитарного оператора обращения времени
Гравитацио́нный потенциа́л — скалярная функция координат и времени, достаточная для полного описания гравитационного поля в классической механике. Имеет размерность квадрата скорости, обычно обозначается буквой . Гравитационный потенциал в данной точке пространства, задаваемой радиус-вектором , численно равен работе, которую выполняют гравитационные силы при перемещении пробного тела единичной массы по произвольной траектории из данной точки в точку, где потенциал принят равным нулю. Гравитационный потенциал равен отношению потенциальной энергии небольшого тела, помещённого в эту точку, к массе тела . Как и потенциальная энергия, гравитационный потенциал всегда определяется с точностью до постоянного слагаемого, обычно (но не обязательно) подбираемого таким образом, чтобы потенциал на бесконечности оказался нулевым. Например, гравитационный потенциал на поверхности Земли, отсчитываемый от бесконечно удалённой точки (если пренебречь гравитацией Солнца, Галактики и других тел), отрицателен и равен −62,7·106 м2/с2 (половине квадрата второй космической скорости).
Ста́рая ква́нтовая тео́рия — подход к описанию атомных явлений, который был развит в 1900—1924 годах и предшествовал созданию квантовой механики. Характерная черта этой теории — одновременное использование классической механики и некоторых предположений, вступавших в противоречие с ней. Основа старой квантовой теории — модель атома Бора, к которой позднее Арнольд Зоммерфельд добавил квантование z-компоненты углового момента, неудачно названное пространственным квантованием. Квантование z-компоненты дало возможность ввести эллиптические электронные орбиты и предложить концепцию энергетического вырождения. Успех старой квантовой теории состоял в корректном описании атома водорода и нормального эффекта Зеемана.