Алгебра логики — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Дизъю́нкция, логи́ческое сложе́ние, логи́ческое ИЛИ, включа́ющее ИЛИ; иногда просто ИЛИ — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу».
Логика высказываний, пропозициональная логика или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Законы де Мо́ргана — логические правила, связывающие пары логических операций при помощи логического отрицания. Названы в честь шотландского математика Огастеса де Моргана. В краткой форме звучат так:
- Отрицание конъюнкции есть дизъюнкция отрицаний.
- Отрицание дизъюнкции есть конъюнкция отрицаний.
Зада́ча выполни́мости бу́левых фо́рмул — важная для теории вычислительной сложности алгоритмическая задача.
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Ка́рта Ка́рно — графический способ представления булевых функций с целью их удобной и наглядной ручной минимизации.
Конъюнкти́вный одночле́н — булева формула, представляющая собой конъюнкцию литералов:
- ,
Дизъюнкти́вный одночле́н — дизъюнкция литералов :
- ,
Полином Жегалкина — многочлен над полем , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ).
Метод Куайна — способ представления функции в ДНФ или КНФ с минимальным количеством членов и минимальным набором переменных.
Преобразование функции можно разделить на два этапа:
- на первом этапе осуществляется переход от канонической формы к так называемой сокращённой форме;
- на втором этапе — переход от сокращённой формы к минимальной форме.
Соверше́нная дизъюнкти́вная норма́льная фо́рма (СДНФ) — одна из форм представления функции алгебры логики в виде логического выражения. Представляет собой частный случай ДНФ, удовлетворяющий следующим трём условиям:
- в ней нет одинаковых слагаемых ;
- в каждом слагаемом нет повторяющихся переменных;
- каждое слагаемое содержит все переменные, от которых зависит булева функция.
Комбинационная логика в теории цифровых устройств — двоичная логика функционирования устройств комбинационного типа. У комбинационных устройств состояние выхода однозначно определяется набором входных сигналов, что отличает комбинационную логику от секвенциальной логики, в рамках которой выходное значение зависит не только от текущего входного воздействия, но и от предыстории функционирования цифрового устройства. Другими словами, секвенциальная логика предполагает наличие памяти, которая в комбинационной логике не предусмотрена.
Схема функциональной целостности (СФЦ) — это логически универсальное графическое средство структурного представления исследуемых свойств системных объектов. Описание аппарата схем функциональной целостности было впервые опубликовано Можаевым А. С. в 1982 году. По построению аппарат СФЦ реализует все возможности алгебры логики в функциональном базисе «И», «ИЛИ» и «НЕ». СФЦ позволяют корректно представлять как все традиционные виды структурных схем, так и принципиально новый класс немонотонных (некогерентных) структурных моделей различных свойств исследуемых систем. В настоящее время СФЦ применяются для построения структурных схем для расчета показателей надежности, стойкости, живучести, технического риска, реальной эффективности систем.