Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Математи́ческий ана́лиз — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
При́нцип наиме́ньшего де́йствия Га́мильтона, также просто принцип Гамильтона — способ получения уравнений движения физической системы при помощи поиска стационарного значения специального функционала — действия. Назван в честь Уильяма Гамильтона, использовавшего этот принцип для построения так называемого гамильтонова формализма в классической механике.
Дифференциа́льное уравне́ние — уравнение, которое помимо функции содержит её производные. Порядок входящих в уравнение производных может быть различен. Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или отсутствовать вовсе, кроме хотя бы одной производной. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным. Например, не является дифференциальным уравнением.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Существует множество математических и физических объектов, названных в честь Леонарда Эйлера, что породило шуточное фольклорное правило: «В математике принято называть открытие именем второго человека, который его сделал — иначе пришлось бы всё называть именем Эйлера».
Уравне́ния Э́йлера — Лагра́нжа являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации и совместно с принципом стационарности действия используются для вычисления траекторий в механике. В теоретической физике вообще это (классические) уравнения движения в контексте получения их из написанного явно выражения для действия (лагранжиана).
Лагранжева механика — формулировка классической механики, введённая Луи Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Фо́рмула Гаусса — Остроградского связывает поток непрерывно-дифференцируемого векторного поля через замкнутую поверхность и интеграл от дивергенции этого поля по объёму, ограниченному этой поверхностью.
Многомерный анализ является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
Список объектов, названных в честь французского математика XIX века Огюстена Луи Коши.
- Горизонт Коши
- Задача Коши — задача нахождения решения дифференциального уравнения, удовлетворяющего начальным условиям.
- Интеграл Коши — Лагранжа — интеграл уравнений движения идеальной жидкости в случае потенциальных течений.
- Интегральная теорема Коши — интеграл от аналитической функции по замкнутой кривой в односвязной области равен нулю.
- Интегральная формула Коши — соотношение для голоморфных функций комплексного переменного, связывающее значение функции в точке с её значениями на контуре, окружающем точку.
- Интегральный признак Коши — Маклорена — признак сходимости убывающего положительного числового ряда.
- Коши — небольшой ударный кратер на видимой стороне Луны.
- Критерий Коши равномерной сходимости несобственных интегралов.
- Критерий сходимости Коши — критерий сходимости числовых рядов.
- Лемма Коши — Фробениуса — классический результат комбинаторной теории групп, даёт выражение на число орбит в действии группы.
- Матрица Коши
- Матрица Коши — матрица, с помощью которых выражаются решения систем неоднородных дифференциальных уравнений.
- Неравенство Коши — Буняковского — обобщение неравенства треугольника, связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве.
- Неравенство Коши — соотношение среднего арифметического, среднего геометрического, среднего гармонического и среднего квадратического.
- Принцип Коши — Кантора — лемма о вложенных отрезках, доказывающая полноту множества вещественных чисел.
- Радикальный признак Коши — признак сходимости числового ряда.
- Распределение Коши — класс вероятностных распределений.
- Телескопический признак Коши — признак сходимости положительных числовых рядов.
- Тензор деформации Коши-Грина — тензор, который характеризует сжатие (растяжение) и изменение формы в каждой точке тела при деформации.
- Тензор напряжений Коши — тензор, описывающий механические напряжения в произвольной точке нагруженного тела при малых деформациях.
- Теоре́ма Больцано — Коши — если непрерывная функция, определённая на вещественном промежутке, принимает два значения, то она принимает и любое значение между ними.
- Теорема Коши о вычетах — даёт способ вычисления интеграла мероморфной функции по замкнутому контуру.
- Теорема Коши — Адамара о степенном ряде — оценка радиуса сходимости некоторых степенных рядов.
- Теорема Коши — Дэвенпорта в аддитивной комбинаторике: размер множества сумм двух множеств в группе вычетов никогда не оказывается существенно меньше, чем сумма их размеров.
- Теорема Коши — Ковалевской — теорема о существовании и единственности локального решения задачи Коши для дифференциального уравнения в частных производных.
- Теорема Коши о многогранниках — грани многогранника вместе с правилом склейки полностью определяют выпуклый многогранник.
- Теорема Коши о среднем значении — обобщение формулы конечных приращений.
- Теорема Коши — Пеано — теорема о существовании решения обыкновенного дифференциальное уравнения.
- Теорема Коши — Пуанкаре — обобщение на случай многомерного комплексного пространства интегральной теоремы Коши.
- Теорема Коши — если порядок конечной группы делится на простое число , то содержит элементы порядка .
- Уравнение Коши - Эйлера — вид линейного дифференциального уравнения, допускающего простой алгоритм решения.
- Условия Коши — Римана — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного.
- Формула Бине — Коши — теорема об определителе произведения двух матриц, которое является квадратной матрицей
- Фундаментальная последовательность Коши — последовательность точек метрического пространства такая, что для любого ненулевого заданного расстояния существует элемент последовательности, начиная с которого все элементы последовательности находятся друг от друга на расстоянии менее, чем заданное.
- Условие Коши — критерий сходимости фундаментальной последовательности Коши.
- Функциональное уравнение Коши
- Число Коши — критерий подобия в механике сплошных сред.