Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом . Предложены Уильямом Гамильтоном в 1843 году.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Теория узлов — изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу . В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вложения многообразий в целом.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
В теории узлов трилистник — простейший нетривиальный узел. Трилистник можно получить, соединив 2 свободных конца обычного простого узла, в результате чего получаем заузленное кольцо. Как простейший узел, трилистник является фундаментальным объектом при изучении математической теории узлов, которая имеет многообразные приложения в топологии, геометрии, физике, химии и иллюзионизме.
Поверхность Зейферта — вложенная в трёхмерное пространство поверхность, краем которой является данный узел или зацепление. Названа в честь Герберта Зейферта и является полезным инструментом в теории узлов.
Тривиальный узел — геометрический узел, объемлюще-изотопный стандартному вложению окружности в трёхмерную сферу, а также объемлюще-изотопический класс такого геометрического узла.
Многочлен Джонса — полиномиальный инвариант узла, сопоставляющий каждому узлу или зацеплению многочлен Лорана от формальной переменной с целыми коэффициентами. Построен Воном Джонсом в 1984 году.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Многочлен Александера — это инвариант узла, который сопоставляет многочлен с целыми коэффициентами узлу любого типа. Джеймс Александер обнаружил его, первый многочлен узла, в 1923. В 1969 Джон Конвей представил версию этого многочлена, ныне носящую название многочлен Александера — Конвея. Этот многочлен можно вычислить с помощью скейн-соотношения, хотя важность этого не была осознана до открытия полинома Джонса в 1984. Вскоре после доработки Конвеем многочлена Александера стало понятно, что похожее скейн-cоотношение было и в статье Александера для его многочлена.
У́зел в математике — вложение окружности в трёхмерное евклидово пространство, рассматриваемое с точностью до изотопии. Основной предмет изучения теории узлов. Два узла считаются эквивалентными, если они изотопны, то есть один из них можно непрерывно продеформировать в другой, причём в процессе деформации не должно возникать самопересечений.
В теории узлов стивидорный узел или узел грузчика — это один из трёх простых узлов с числом пересечений шесть, два других — 62 и 63. Стивидорный узел числится под номером 61 knot в списке Александера — Бриггса и может быть описан как скрученный узел с четырьмя полуоборотами или как (5,−1,−1) кружевной узел.
В теории узлов ленточный узел — это узел, который ограничивает самопересекающийся круг только с ленточными особенностями. Интуитивно, этот вид особенности может быть образован путём совершения разреза в круге и пропусканием другой части круга через разрез. Более формально, этот тип особенности заключается в самопересечении по дуге. Прообраз этой дуги состоит из двух дуг круга, одна из которых полностью лежит внутри круга, а концы другой находятся на краю круга.
В теории узлов прямой узел — это составной узел, полученный соединением трилистника с его отражением. Узел тесно связан с бабьим узлом, который также является соединением двух трилистников. Поскольку трилистник является простейшим нетривиальным узлом, прямой и бабий узлы являются простейшими составными узлами.
В теории узлов бабий узел — это составной узел, полученный соединением двух одинаковых трилистников. Узел тесно связан с прямым узлом, который тоже можно описать как соединение двух трилистников. Поскольку трилистник является простейшим нетривиальным узлом, прямой и бабий узлы являются простейшими составными узлами.
Классы Чженя — это характеристические классы, ассоциированные с комплексными векторными расслоениями.
Многочлен HOMFLY — инвариант зацепления в форме многочлена двух переменных.
В этом глоссарии приведены определения основных терминов, использующихся в теории узлов. Курсивом выделены ссылки внутри глоссария.