Система линейных алгебраических уравнений — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.
CORDIC — итерационный метод сведения прямых вычислений сложных функций к выполнению простых операций сложения и сдвига.
Ме́тоды Ру́нге — Ку́тты — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Метод Якоби — разновидность метода простой итерации для решения системы линейных алгебраических уравнений. Назван в честь Карла Густава Якоби.
Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Ме́тод Га́усса — Зе́йделя — является классическим итерационным методом решения системы линейных уравнений.
Метод Ньютона, алгоритм Ньютона — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.
EMD — метод разложения сигналов на функции, которые получили название «эмпирических мод».
Численные (вычислительные) методы — методы решения математических задач в численном виде.
Предобуславливание — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи[уточнить]. Предобуславливаемая задача обычно затем решается итерационным методом.
Метод итерации или метод простой итерации — численный метод решения системы линейных алгебраических уравнений. Суть метода заключается в нахождении по приближённому значению величины следующего приближения, являющегося более точным.
Метод сопряженных градиентов — численный метод решения систем линейных алгебраических уравнений, является итерационным методом Крыловского типа.
Метод бисопряжённых градиентов — итерационный численный метод решения СЛАУ крыловского типа. Является обобщением метода сопряжённых градиентов.
Алгоритм Бройдена — Флетчера — Гольдфарба — Шанно (BFGS) — итерационный метод численной оптимизации, предназначенный для нахождения локального максимума/минимума нелинейного функционала без ограничений.
Стабилизированный метод бисопряжённых градиентов — итерационный метод решения СЛАУ крыловского типа. Разработан Ван дэр Ворстом (англ.) для решения систем с несимметричными матрицами. Сходится быстрее, чем обычный метод бисопряженных градиентов, который является неустойчивым, и поэтому применяется чаще.
В численной линейной алгебре итерация Арнольди является алгоритмом вычисления собственных значений. Арнольди находит приближение собственных значений и собственных векторов матриц общего вида(возможно не эрмитовой) с помощью построения ортонормированного базиса подпространства Крылова.
Итерация Ландвебера или Алгоритм Ландвебера — это алгоритм решения некорректно поставленных линейных обратных задач. Алгоритм был расширен на решение нелинейных задач с ограничениями. Метод впервые представлен в 1950-х годах Луисом Ландвебером и в настоящее время этот метод понимается как частный случай многих других более общих методов.
Численные методы линейной алгебры — это методы приближенного решения задач из области вычислительной математики и линейной алгебры. Целью дисциплины является разработка и анализ алгоритмов для численного решения матричных задач. Наиболее важными задачами являются решение систем линейных алгебраических уравнений и вычисление собственных значений.
Эта страница основана на
статье Википедии.
Текст доступен на условиях лицензии
CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и звуки доступны по их собственным лицензиям.