Сложе́ние (прибавле́ние) — одна из основных бинарных математических операций двух аргументов (слагаемых), результатом которой является новое число (сумма), получаемое увеличением значения первого аргумента на значение второго аргумента. То есть каждой паре элементов из множества ставится в соответствие элемент , называемый суммой и . Это одна из четырёх элементарных математических операций арифметики. Приоритет её в обычном порядке операций равен приоритету вычитания, но ниже, чем у возведения в степень, извлечения корня, умножения и деления. На письме сложение обычно обозначается с помощью знака «плюс»: .
Сложение возможно, только если оба аргумента принадлежат одному множеству элементов. Так, на картинке справа запись обозначает три яблока и два яблока вместе, что в сумме даёт пять яблок. Но нельзя сложить, например, 3 яблока и 2 груши.
Слегка избыточное число — избыточное число, сумма собственных делителей которого на единицу больше самого числа.
Недостаточное число — натуральное число, сумма собственных делителей которого меньше самого числа. Любое натуральное число относится к одному из трёх классов: недостаточные числа, совершенные числа, избыточные числа.
Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления, причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Гиперболические числа, или двойны́е чи́сла, паракомпле́ксные чи́сла, расщепля́емые компле́ксные чи́сла, компле́ксные чи́сла гиперболи́ческого ти́па, контркомпле́ксные чи́сла — гиперкомплексные числа вида «a + j · b», где a и b — вещественные числа и причём j ≠ ±1.
Полусоверше́нное число́ — натуральное число, сумма всех или некоторых собственных делителей которого совпадает с самим этим числом.
Теория чисел — это раздел математики, занимающийся преимущественно изучением натуральных и целых чисел и их свойств, часто с привлечением методов математического анализа и других разделов математики. Теория чисел содержит множество проблем, попытки решения которых предпринимались математиками в течение десятков, а иногда даже сотен лет, но которые пока так и остаются открытыми. Ниже приведены некоторые из наиболее известных нерешённых проблем.
Фу́нкция дели́телей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем фу́нкция диви́зоров. Применяется, в частности, при исследовании связи дзета-функции Римана и рядов Эйзенштейна для модулярных форм. Изучалась Рамануджаном, который вывел ряд важных равенств в модульной арифметике и арифметических тождествах.
Суперсовершенное число — натуральное число n, такое, что:
Число Оре — натуральное число, среднее гармоническое делителей которого является целым числом. Понятие числа Оре введено Ойстином Оре в 1948 году. Первые несколько чисел Оре:
- 1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18 600, 18 620, ….
Сюрреальные числа — обобщение обычных вещественных чисел и бесконечных порядковых чисел. Впервые были использованы в работах английского математика Джона Конвея для описания ряда аспектов теории игр.
Сверхсоставное число — натуральное число с бо́льшим числом делителей, чем любое меньшее натуральное число.
Гиперсовершенное число — k-гиперсовершенное число для некоторого целого k. k-гиперсовершенное число — натуральное число n, для которого верно
Компанейские числа — это числа, чьи аликвотные суммы формируют циклические последовательности, которые начинаются и заканчиваются одним и тем же числом. Являются обобщением совершенных чисел и дружественных чисел. Первые две компанейские последовательности или компанейские цепи были обнаружены и названы бельгийским математиком Полом Пуле в 1918 году. В компанейской последовательности каждое число является суммой собственных делителей предыдущего числа, то есть эта сумма исключает само предыдущее число.
Приятельские числа — два или более натуральных числа с одинаковым индексом избыточности, отношением суммы делителей чисел и самого числа. Два числа с одинаковой избыточностью образуют приятельскую пару, n чисел с одинаковой избыточностью образуют приятельский n-кортеж.
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.