Протео́мика — область молекулярной биологии, посвящённая идентификации и количественному анализу белков. Термин «протеомика» был предложен в 1997 году. Совокупность всех белков клетки называют протеомом.
Биоинформа́тика — междисциплинарная область, объединяющая общую биологию, молекулярную биологию, кибернетику, генетику, химию, компьютерные науки, математику и статистику. Крупномасштабные биологические проблемы, требующие анализа больших объёмов данных, решаются биоинформатикой с вычислительной точки зрения. Биоинформатика главным образом включает в себя изучение и разработку компьютерных методов и направлена на получение, анализ, хранение, организацию и визуализацию биологических данных.
Белки́ — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций определяет большое разнообразие свойств молекул белков. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс и другие комплексы.
Гено́мика — раздел молекулярной генетики, посвящённый изучению генома и генов живых организмов.
Rosetta@Home — проект добровольных вычислений, направленный на решение одной из самых больших проблем в молекулярной биологии — вычисление третичной структуры белков из их аминокислотных последовательностей. Благодаря недавно завершённому проекту «Геном человека» известны аминокислотные последовательности всех белков в человеческом организме. Исследования по данному проекту также помогут в проектировании новых, несуществующих белков. Хотя большая часть проекта ориентируется на фундаментальные исследования в области улучшения точности и надежности методов протеомики, Rosetta@home также способствует прикладным исследованиям для борьбы с такими болезнями как рак, малярия, болезнь Альцгеймера, сибирская язва и другими генетическими и вирусными заболеваниями. Foldit — это видеоигра от Rosetta@Home, которая стремится достичь целей проекта с краудсорсинг подходом.
Вычислительная биология — это междисциплинарный подход, использующий достижения информатики, прикладной математики и статистики для решения проблем, поставляемых биологией. Главными областями в биологии, которые применяют такие методы, являются:
- Биоинформатика — применяет машинные алгоритмы и статистические методы к наборам биологических данных, состоящих, как правило, из большого числа ДНК, РНК и белковых последовательностей. Если говорить о конкретных примерах, то это сравнение последовательностей, поиск генов и предсказание экспрессии генов. Это очень большая научная область; термин «вычислительная биология» часто выступает как синоним для биоинформатики, что не совсем корректно.
- Вычислительное биомоделирование, подраздел биокибернетики, занимающаяся построением вычислительных моделей биологических систем.
- Вычислительная геномика, подраздел геномики, который изучает геномы клеток и организмов с помощью высокопроизводительного геномного секвенирования, и который использует метод ДНК-микрочипов для статистического анализа выраженных в конкретных типах клеток генов.
- Молекулярное моделирование, область исследований, которая привлекает теоретические и вычислительные методы для моделирования или имитации поведения молекул, причём молекул в самом широком смысле — состоящих от нескольких атомов и до «гигантских» биологических цепочек.
- Системная биология, ставящая целью моделирование полномасштабных биологических сетей взаимодействия, часто использует дифференциальные уравнения.
- Предсказание структур белков и структурная геномика — делают попытки систематически вычислять точные трёхмерные модели структур белков, которые ещё не были получены экспериментальным путём.
- Вычислительные подразделы биохимии и биофизики, широко использующие структурное моделирование и имитационные методы, такие как молекулярная динамика или метод выборки Больцмана, в попытке пролить свет на кинетику и термодинамику функций белков.
- Нейробиология — научная дисциплина, изучающая роль нейронных сетей в работе мозга. Теоретические основы нейробиологии изложил канадский ученый Дональд Хебб в работе The Organization of Behaviour (1949).
Николай Александрович Колчанов — российский учёный, чл.-корр. РАН с 2003 года, академик РАН с 2008 года, научный руководитель Института цитологии и генетики СО РАН с 9 января 2018 года, директор Института цитологии и генетики СО РАН с 2008 года по 2018 года, заведующий отдела системной биологии ИЦиГ СО РАН, доктор биологических наук, профессор, заведующий кафедрой информационной биологии ФЕН НГУ, профессор кафедр информационной биологии, цитологии и генетики НГУ. Является директором организатором первого Федерального исследовательского центра в Новосибирском Академгородке в апреле 2015 года. В данный момент является научным руководителем Федерального исследовательского центра ИЦиГ СО РАН
Проект «Геном человека» — завершённый международный научно-исследовательский проект, главной целью которого было определение последовательности пар оснований, которые составляют ДНК человека, а также выявление, картирование и секвенирование всех генов человеческого генома как с физической, так и с функциональной точки зрения. Этот проект остается крупнейшим международным биологическим проектом, когда-либо проводившимся в биологии. К 2003 году было секвенировано лишь 85 % генома человека, проект был завершён в 2022 году, когда было достигнуто полное секвенирование генома человека.
GenBank — база данных, находящаяся в открытом доступе, содержащая все аннотированные последовательности ДНК и РНК, а также последовательности закодированных в них белков. GenBank поддерживается Национальным центром биотехнологической информации США (NCBI), входящего в состав Национальных Институтов Здоровья в США, и доступен на бесплатной основе исследователям всего мира. GenBank получает и объединяет данные, полученные в разных лабораториях, для более чем 100 000 различных организмов.
Выра́внивание после́довательностей — биоинформатический метод, основанный на размещении двух или более последовательностей мономеров ДНК, РНК или белков друг под другом таким образом, чтобы легко увидеть сходные участки в этих последовательностях. Сходство первичных структур двух молекул может отражать их функциональные, структурные или эволюционные взаимосвязи. Выровненные последовательности оснований нуклеотидов или аминокислот обычно представляются в виде строк матрицы. Добавляются разрывы между основаниями таким образом, чтобы одинаковые или похожие элементы были расположены в следующих друг за другом столбцах матрицы.
Предсказа́ние структу́ры белка́ — направление молекулярного моделирования, предсказание по аминокислотной последовательности трёхмерной структуры белка. Данная задача является одной из самых важных целей биоинформатики и теоретической химии. Данные, полученные при помощи предсказания, применяются в медицине и биотехнологии при создании новых ферментов. Для лучших результатов сочетают несколько программ и методов.
Вычисли́тельная гено́мика использует вычислительный анализ, чтобы расшифровать последовательности генома и связанные с ними данные, включая последовательности ДНК и РНК. Также вычислительная геномика может быть определена как раздел биоинформатики, но с тем отличием, что внимание уделяется анализу полных геномов, чтобы понять принципы того, как различные ДНК управляют организмом на молекулярном уровне.
Ensembl — совместный научный проект Европейского института биоинформатики и Института Сенгера. Основной задачей этого проекта является обеспечение специалистов интегрированным доступом к базам данных, касающихся строения геномов более 50 видов позвоночных, включая человека, мышь, крысу, рыбку Данио-рерио и др. Проект был запущен в 1999 году перед завершением проекта «Геном человека».
Простра́нственное выра́внивание — способ установления гомологии между двумя или более полимерными структурами на основании их трёхмерной структуры. Этот процесс обычно применяется к третичной структуре белков, но может также использоваться и для больших молекул РНК. В противоположность простому наложению структур, когда известно по крайней мере несколько эквивалентных аминокислотных остатков, пространственное выравнивание не требует никаких предварительных данных, кроме координат атомов.
Белок-белковые взаимодействия (ББВ) — обладающие высокой специфичностью физические контакты между двумя и более белками. Эти контакты образуются в результате биохимических событий с помощью электростатических взаимодействий, в том числе гидрофобного эффекта.
STRING — база данных и веб-ресурс для поиска информации об известных и предсказанных белок-белковых взаимодействиях.
Лев Львович Киселёв — советский и российский молекулярный биолог и биохимик.
Предсказа́ние ге́нов — это определение кодирующих и регуляторных последовательностей ДНК в геноме: белковых генов и генов некодирующих РНК, промоторов, энхансеров и прочее.
Предсказа́ние фу́нкции белка́ — определение биологической роли белка и значения в контексте клетки. Предсказание функций проводится для плохо изученных белков или для гипотетических белков, предсказанных на основе данных геномных последовательностей. Источником информации для предсказания могут служить гомология нуклеотидных последовательностей, профили экспрессии генов, доменная структура белков, интеллектуальный анализ текстов публикаций, филогенетические и фенотипические профили, белок-белковые взаимодействия.
Протеогеномика — это область биологических исследований, в которой используется сочетание протеомики, геномики и транскриптомики, с целью обнаружения и идентификации пептидов. Протеогеномика применяется для идентификации новых пептидов путем сравнения спектров МС/МС с базой данных белков, которая была получена из геномной и транскриптомной информации. Протеогеномика часто относится к исследованиям, использующим протеомную информацию, полученную, например, методом масс-спектрометрии, для улучшения аннотаций генома. Геномика изучает ДНК и генетический код целых организмов, в то время как транскриптомика имеет дело с последовательностями РНК и транскриптов. Протеомика использует тандемную масс-спектрометрию и жидкостную хроматографию для определения и изучения функций белков. Протеомика используется для обнаружения всех белков, экспрессируемых в организме, известных как его протеом. Нерешённая проблема протеомики заключается в том, что она основывается на предположении, что современные модели генов верны и что правильные последовательности белка можно найти с помощью базы данных эталонных последовательностей; Однако это не всегда так, поскольку некоторые пептиды не могут быть найдены в базах данных. Кроме того, новые белковые последовательности могут возникать в результате мутаций. Данная проблема может быть решена с использованием протеомных, геномных и транскриптомных данных. Совместное использование методов протеомики и геномики привело к появлению протеогеномики, которая выделилась в самостоятельную область в 2004 году.