Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних, находятся все переменные системы.
Метод Гаусса — Жордана — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана.
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Бло́чная (кле́точная) ма́трица — представление матрицы, при котором она рассекается вертикальными и горизонтальными линиями на прямоугольные части — блоки (клетки):
- ,
Разре́женная/разрежённая матрица — матрица с преимущественно нулевыми элементами. В противном случае, если бо́льшая часть элементов матрицы ненулевая, матрица считается плотной или заполненной.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.
В математике, особенно в теории матриц и комбинаторике, ма́трица Паска́ля — это бесконечная матрица, элементами которой являются биномиальные коэффициенты. Существует три варианта расположения элементов в матрице: в виде верхнетреугольной, нижнетреугольной или симметричной матрицы. 5×5-ограничения таких матриц имеют вид:
Алгоритм вычисления собственных значений — алгоритм, позволяющий определить собственные значения и собственные векторы заданной матрицы. Создание эффективных и устойчивых алгоритмов для этой задачи является одной из ключевых задач вычислительной математики.
Пространство столбцов матрицы — это линейная оболочка её вектор-столбцов. Пространство столбцов матрицы также является образом или областью значений соответствующего ей отображения.
Произведение Хатри — Рао — операция умножения матриц, определяемая выражением:
Алгоритм Тоома — Кука, иногда упоминаемый как Tоом-3 — это алгоритм умножения больших чисел, названный именами Андрея Леоновича Тоома, предложившего новый алгоритм с низкой сложностью и Стивена Кука, более ясно его описавшего.
Нормальная форма Хауэлла — аналог ступенчатого вида матрицы для матриц над кольцом остатков по модулю .