Ме́ра мно́жества — числовая характеристика множества, интуитивно её можно понимать как массу множества при некотором распределении массы по пространству. Понятие меры множества возникло в теории функций вещественной переменной при развитии понятия интеграла.
Ги́льбертово простра́нство — обобщение евклидова пространства, допускающее бесконечную размерность и полное по метрике, порождённой скалярным произведением. Названо в честь Давида Гильберта.
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Обыкновенное дифференциальное уравне́ние (ОДУ) — дифференциальное уравнение для функции от одной переменной Таким образом, ОДУ — уравнения вида
Теоре́ма Радо́на — Нико́дима в функциональном анализе и смежных дисциплинах описывает общий вид меры, абсолютно непрерывной относительно другой меры.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Субдифференциал функции f, заданной на банаховом пространстве E — это один из способов обобщить понятие производной на произвольные функции. Хотя при его использовании приходится пожертвовать однозначностью отображения, он оказывается довольно удобным: любая выпуклая функция оказывается субдифференцируемой на всей области определения. В тех случаях, когда о дифференцируемости функции заранее ничего не известно, это оказывается существенным преимуществом.
Функционал Минковского — функционал, использующий линейную структуру пространства для введения топологии на нём. Назван по имени немецкого математика Германа Минковского.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Лемма Шепли — Фолкмана связывает две операции выпуклой геометрии — сложение по Минковскому и выпуклую оболочку. Лемма имеет приложения в ряде дисциплин, в том числе в математической экономике, оптимизации и теории вероятностей. Лемма и связанные с ней результаты позволяют дать утвердительный ответ на вопрос «Близка ли к состоянию выпуклости сумма нескольких множеств?».
Теорема сумм-произведений — теорема арифметической комбинаторики, устанавливающая неструктурированность любого достаточно большого множества относительно хотя бы одной из операций поля. Название обсуловлено тем, что метрикой структурированности относительно той или иной операции является количество различных сумм или произведений, которые можно составить из элементов данного множества.
Эллипсоидальные координаты — трёхмерная ортогональная система координат , являющаяся обобщением двумерной эллиптической системы координат. Данная система координат основана на использовании софокусных поверхностей второго порядка.
Группа Лоренца является группой Ли симметрий пространства-времени в специальной теории относительности. Эта группа может быть реализована как набор матриц, линейных преобразований или унитарных операторов на некотором гильбертовом пространстве. Группа имеет различные представления. В любой релятивистски инвариантной физической теории эти представления как-то должны быть отражены. Сама физика должна быть сделана на их основе. Более того, специальная теория относительности вместе с квантовой механикой являются двумя физическими теориями, которые тщательно проверены и объединение этих двух теорий сводится к изучению бесконечномерных унитарных представлений группы Лоренца. Это имеет как историческую важность в основном течении в теоретической физике, так и связи с более спекулятивными теориями настоящего времени.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.