Систе́ма счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.
Сложе́ние (прибавле́ние) — одна из основных бинарных математических операций двух аргументов (слагаемых), результатом которой является новое число (сумма), получаемое увеличением значения первого аргумента на значение второго аргумента. То есть каждой паре элементов из множества ставится в соответствие элемент , называемый суммой и . Это одна из четырёх элементарных математических операций арифметики. Приоритет её в обычном порядке операций равен приоритету вычитания, но ниже, чем у возведения в степень, извлечения корня, умножения и деления. На письме сложение обычно обозначается с помощью знака «плюс»: .
Сложение возможно, только если оба аргумента принадлежат одному множеству элементов. Так, на картинке справа запись обозначает три яблока и два яблока вместе, что в сумме даёт пять яблок. Но нельзя сложить, например, 3 яблока и 2 груши.
Двои́чная систе́ма счисле́ния — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.
Вычита́ние (убавление) — одна из вспомогательных бинарных математических операций двух аргументов, результатом которой является новое число (разность), получаемое уменьшением значения первого аргумента на значение второго аргумента. На письме обычно обозначается с помощью знака «минус»: . Вычитание — операция обратная сложению.
При́знак дели́мости — алгоритм, позволяющий сравнительно быстро определить, является ли число кратным заранее заданному. Если признак делимости позволяет выяснить не только делимость числа на заранее заданное, но и остаток от деления, то его называют признаком равноостаточности.
Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев на руках у человека.
p-адическое число — теоретико-числовое понятие, определяемое для заданного фиксированного простого числа p как элемент расширения поля рациональных чисел. Это расширение является пополнением поля рациональных чисел относительно p-адической нормы, определяемой на основе свойств делимости целых чисел на p.
Ноль — целое число, которое при сложении с любым числом или вычитании из него не меняет последнее, то есть даёт результат, равный этому последнему; умножение любого числа на ноль даёт ноль.
Умноже́ние — одна из основных математических операций над двумя аргументами, которые называются множителями или сомножителями. Результат умножения называется их произведением.
Полный квадрат, также точный квадрат или квадратное число, — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень из которого извлекается нацело. Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.
Трои́чная систе́ма счисле́ния — позиционная система счисления с целочисленным основанием, равным 3.
Число Армстронга — натуральное число, которое в данной системе счисления равно сумме своих цифр, возведённых в степень, равную количеству его цифр. Иногда, чтобы считать число таковым, достаточно, чтобы степени, в которые возводятся цифры, были равны m — тогда число можно назвать m-самовлюблённым.
Позиционная систе́ма счисле́ния — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда) относительно десятичного разделителя. Позиционные системы по сравнению с другими позволяют существенно упростить алгоритмы выполнения арифметических операций и ускорить вычисления. Их создание и распространение сыграли большую роль в развитии точных наук — математики, астрономии и физики.
Не́га-позицио́нная систе́ма счисле́ния — позиционная система счисления с отрицательным основанием. Особенностью таких систем является отсутствие знака перед отрицательными числами и, следовательно, отсутствие правил знаков. Всякое число любой из нега-позиционных систем, отличное от , с нечётным числом цифр — положительно, а с чётным числом цифр — отрицательно. Часто число в нега-позиционной системе требует для записи на одну цифру больше, чем то же число в системе с положительным основанием. Обычно название нега-позиционной системы состоит из приставки нега- и названия соответствующей системы счисления с положительным основанием; например, нега-десятичная (b = −10), нега-троичная (b = −3), нега-двоичная (b = −2) и другие.
Фибоначчиева система счисления — смешанная система счисления для целых чисел на основе чисел Фибоначчи F2=1, F3=2, F4=3, F5=5, F6=8 и т. д.
Арифметическая функция — функция, определённая на множестве натуральных чисел и принимающая значения из множества комплексных чисел .
Проблема 196 — условное название нерешённой математической задачи: неизвестно, приведёт ли операция «перевернуть и сложить», применённая к числу 196 какое-то количество раз, к палиндрому — числу, читающемуся с конца так же, как с начала.