Спектр в физике — скалярная функция частоты , длины волны или, реже, другой физической величины, определяющая «относительную представленность» значений данной величины в изучаемом объекте: сложном сигнале, многокомпонентной среде и прочем. С точностью до нормировки совпадает с плотностью или рядом распределения соответствующей величины. В составных понятиях, например спектр поглощения или спектр испускания, слово спектр по сути означает «спектральный состав» изучаемого явления.
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым радиоизлучением.
Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение) — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5⋅1014—3⋅1016 Гц). Термин происходит от лат. ultra — сверх, за пределами и фиолетовый (violet). В разговорной речи может использоваться также наименование «ультрафиолет».
Лазерный диод — полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсии населённостей в области p-n перехода при инжекции носителей заряда.
Сетча́тка — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.
Фотолюминесценция — люминесценция (свечение), возбуждаемая светом разной длинной волны. Бывает двух типов, в зависимости от срока остаточного послесвечения: флуоресценция и фосфоресценция.
Инфракра́сная спектроскопи́я — раздел спектроскопии, изучающий взаимодействие инфракрасного излучения с веществами.
Титан-сапфировый лазер (Ti:Sapphire лазер, Ti:Sa лазер) — лазеры с широкой полосой генерации (700—1100 нм). Активная среда титан-сапфирового лазера традиционно выполняется в виде короткого (2—10 мм) стержня (диска) из монокристалла сапфира (корунда — Al2O3) с примесью ионов Ti3+. Концентрация примеси выбирается из условия поглощения примерно 90 % излучения накачки. Широкая полоса усиления позволяет осуществлять перестройку длины волны лазерной генерации или генерацию сверхкоротких импульсов.
Лазеры сверхкоротких импульсов, лазеры УКИ (ПКИ), фемтосекундные лазеры — оптические квантовые генераторы, способные генерировать импульсы лазерного излучения, которые содержат достаточно малое число колебаний оптического поля.
Ви́димое излуче́ние — электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм, в зелёной части спектра. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380—400 нм, а в качестве длинноволновой — 760—780 нм. Электромагнитное излучение с такими длинами волн также называется видимым излучением, или светом.
Анализа́тор спе́ктра — прибор для наблюдения и измерения относительного распределения энергии электрических (электромагнитных) колебаний в полосе частот.
Эмиссионный спектр, спектр излучения, спектр испускания — относительная интенсивность электромагнитного излучения объекта исследования по шкале частот.
EDFA — волоконно-оптический усилитель на оптическом волокне, легированном ионами эрбия.
Оптические материалы — природные и синтетические материалы, монокристаллы, стёкла, поликристаллические, полимерные и другие материалы, прозрачные в том или ином диапазоне электромагнитных волн. Их применяют для изготовления оптических элементов, работающих в ультрафиолетовой, видимой, инфракрасной областях спектра.
Волоко́нный ла́зер — лазер, активная среда и, возможно, резонатор которого являются элементами оптического волокна. При полностью волоконной реализации такой лазер называется цельноволоконным, при комбинированном использовании волоконных и других элементов в конструкции лазера он называется волоконно-дискретным или гибридным. Волоконные лазеры применяются в промышленности для резки металлов и маркировки продукции, сварки и микрообработки металлов, в линиях волоконно-оптической связи. Их основными преимуществами являются высокое оптическое качество излучения, небольшие габариты и возможность встраивания в волоконные линии.
Тума́нность — участок межзвёздной среды, выделяющийся своим излучением или поглощением излучения на общем фоне неба. Ранее туманностями называли всякий неподвижный на небе протяжённый объект. В 1920-е годы выяснилось, что среди туманностей много галактик. После этого термин «туманность» стал пониматься более узко, в указанном выше смысле.
Золотая медаль имени С. И. Вавилова — научная награда Российской академии наук. Присуждается с 1952 года Президиумом АН за выдающиеся работы в области физики. Носит имя академика Сергея Ивановича Вавилова. Присуждение медали приурочивается ко дню рождения С. И. Вавилова — 24 марта. В конкурсе на соискание медали могут участвовать отдельные лица, персонально.
Фото́нно-кристалли́ческое опти́ческое волокно́ — класс оптических волокон, оболочка которых имеет структуру двумерного фотонного кристалла.
Волоко́нная брэ́гговская решётка (ВБР) — распределённый брэгговский отражатель, сформированный в светонесущей сердцевине оптического волокна. ВБР обладают узким спектром отражения, используются в волоконных лазерах, волоконно-оптических датчиках, для стабилизации и изменения длины волны лазеров и лазерных диодов и т. д.
Накачка лазера — процесс перекачки энергии внешнего источника в рабочую среду лазера. Поглощённая энергия переводит атомы рабочей среды в возбуждённое состояние. Когда число атомов в возбуждённом состоянии превышает количество атомов в основном состоянии, возникает инверсия населённости. В этом состоянии начинает действовать механизм вынужденного излучения и происходит излучение лазера или же оптическое усиление. Мощность накачки должна превышать порог генерации лазера. Энергия накачки может предоставляться в виде света, электрического тока, энергии химической или ядерной реакций, тепловой или механической энергии.