Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику.
Спин — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с движением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.
Физи́ческая хи́мия — раздел химии, наука об общих законах строения, структуры и превращения химических веществ. Исследует химические явления с помощью теоретических и экспериментальных методов физики. Наиболее обширный раздел химии.
Парадокс Эйнште́йна — Подо́льского — Ро́зена — парадокс, предложенный для указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, без непосредственного воздействия на этот объект. Целью такого косвенного измерения является попытка извлечь больше информации о состоянии микрообъекта, чем даёт квантовомеханическое описание его состояния.
При́нцип суперпози́ции — допущение, согласно которому результирующий эффект нескольких независимых воздействий есть сумма эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, которые описываются линейными уравнениями. Важен во многих разделах классической физики: в механике, теории колебаний и волн, теории физических полей.
Электронная конфигурация — формула расположения электронов по различным электронным оболочкам атома, химического элемента или молекулы.
Ква́нтовый компью́тер — вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Квантовый компьютер оперирует не битами, а кубитами, имеющими значения одновременно и 0, и 1. Теоретически это позволяет обрабатывать все возможные состояния одновременно, достигая существенного преимущества над обычными компьютерами в ряде алгоритмов.
Волнова́я фу́нкция, или пси-фу́нкция — комплекснозначная функция, используемая в квантовой механике для математического описания чистого квантового состояния изолированной квантовомеханической системы. Наиболее распространённые символы для волновой функции — греческие буквы ψ и Ψ. Является коэффициентом разложения вектора состояния по базису. Например, при разложении по координатному базису:
Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции зависит от разности фаз накладывающихся волн.
Квантовое состояние — любое возможное состояние, в котором может находиться квантовая система. Чистое квантовое состояние может быть описано:
- В волновой механике — волновой функцией,
- В матричной механике — вектором состояния, или полным набором квантовых чисел для определённой системы.
Принцип исключения Паули — квантово-механический принцип, который гласит, что два или более идентичных фермиона не могут одновременно находиться в одном и том же квантовом состоянии в квантовой системе. Этот принцип был сформулирован австрийским физиком Вольфгангом Паули в 1925 году для электронов, а затем распространился на все фермионы в его теореме о связи спина со статистикой в 1940 году.
Копенга́генская интерпрета́ция — интерпретация (толкование) квантовой механики, которую сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене около 1927 года. Бор и Гейзенберг усовершенствовали вероятностную интерпретацию волновой функции, данную Максом Борном, и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.
Физи́ческое по́ле — форма материи, физическая система, обладающая бесконечным количеством степеней свободы. Самыми ранними примерами физических полей служат электромагнитное и гравитационные поля. Математически задаётся набором чисел в каждой точке пространства-времени и может быть представлено в виде скаляра, вектора, тензора, спинора или некоторой совокупностью таких чисел. Величина, через которую можно узнать обо всех интересующих нас свойствах поля, называется полевой функцией. Она описывает все физические проявления поля. Динамика физического поля подчиняется динамическим уравнениям. В частности, для электромагнитного поля — это уравнения Максвелла, а для гравитационного поля — уравнения Эйнштейна. В современном представлении квантованные физические поля представляют собой фундаментальное понятие, с помощью которого описываются известные взаимодействия и превращения элементарных частиц.
Кот Шрёдингера — мысленный эксперимент, предложенный одним из создателей квантовой механики Эрвином Шрёдингером в 1935 году при обсуждении физического смысла волновой функции. В ходе эксперимента возникает суперпозиция живого и мёртвого кота, что выглядит абсурдно с точки зрения здравого смысла.
Многомирова́я интерпрета́ция или интерпретация Эверетта — интерпретация квантовой механики, которая предполагает существование, в некотором смысле, «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые постоянные, но которые находятся в различных состояниях. Исходная формулировка принадлежит Хью Эверетту.
Формулировка квантовой механики через интеграл по траекториям — описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое определение одиночной, уникальной траектории системы полной суммой по бесконечному множеству всевозможных траекторий для расчёта квантовой амплитуды. Методологически формулировка через интеграл по траекториям близка к принципу Гюйгенса — Френеля из классической теории волн.
Основные положения статистической интерпретации волновой функции были сформулированы Максом Борном в 1926 году, как только было опубликовано волновое уравнение Шрёдингера. В отличие от интерпретации Шрёдингера, представляющей электрон в атоме в виде волнового пакета, интерпретация Борна рассматривала электрон в атоме как отрицательно заряженную элементарную частицу и сохраняла структуру электрона. Но при этом законы движения электрона в атоме приобретают вероятностный характер, определяемый волновой функцией. В рамках статистической интерпретации волновой функции терялся смысл понятия траектории движения электрона, однако можно было рассматривать вероятность нахождения электрона в определённом элементе пространства, окружающего ядро атома.
Дискуссия Бора и Эйнштейна — серия публичных споров о квантовой механике между Альбертом Эйнштейном и Нильсом Бором, являющаяся важным этапом развития философии науки. Итоги дискуссии были подведены Бором в обзорной статье под названием «Дискуссии с Эйнштейном о проблемах теории познания в атомной физике». Несмотря на их различия во мнениях относительно квантовой механики, Бор и Эйнштейн до конца своих дней испытывали взаимное восхищение.
В физике эффектом наблюдателя называют теорию, что простое наблюдение явления неизбежно изменяет его. Часто это следствие несовершенства применяемых инструментов, которые по своему принципу работы изменяют состояние измеряемой величины. Примером служит проверка давления в автомобильных шинах; это трудно сделать, не выпуская немного воздуха при соединении с манометром; кроме того, прибор сам имеет какой-то объём. Невозможно увидеть какой-то объект без облучения его светом или другими частицами, которые влияют на состояние объекта, а поглощение квантов для измерения освещённости уменьшает её. Даже если эффект наблюдателя невелик, объект всё равно изменяет состояние. Этот эффект наблюдается во многих областях физики, но обычно может быть уменьшен подбором эффективных инструментов и/или использованием лучших методов наблюдения.