Практическое построение окружности возможно с помощью циркуля. Окру́жность — замкнутая плоская кривая, все точки которой равноудалены от заданной точки, лежащей в той же плоскости, что и кривая: эта точка называется центром окружности. Отрезок, соединяющий центр с какой-либо точкой окружности, называется радиусом; радиусом называется также и длина этого отрезка. Окружность разбивает плоскость на две части — конечную внутреннюю и бесконечную внешнюю. Внутренность окружности называется кругом; граничные точки, в зависимости от подхода, круг может включать или не включать.
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Эллипсо́ид — поверхность в трёхмерном пространстве, полученная деформацией сферы вдоль трёх взаимно перпендикулярных осей.
Дифференциа́льная геоме́трия кривы́х — раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
Моме́нт ине́рции — тензорная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле. Момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества, которое, формально, может представлять собой не обязательно ось вращения, но и точку или плоскость. В последних случаях говорят о моменте инерции относительно точки или плоскости, а возникать такие величины могут в формальных вычислениях, например, при расчете тензора инерции.
Ко́нус — поверхность, образованная в пространстве множеством лучей, соединяющих все точки некоторой плоской кривой с данной точкой пространства.
Гамильтониа́н в квантовой теории — оператор полной энергии системы. Название «гамильтониан», как и название «функция Гамильтона», происходит от фамилии ирландского математика Уильяма Роуэна Гамильтона.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Асфери́ческими называют линзы, одна или обе поверхности которых не являются сферическими.
Шар — геометрическое тело; совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного. Это расстояние называется радиусом шара. Шар образуется вращением полукруга вокруг его неподвижного диаметра. Этот диаметр называется осью шара, а оба конца указанного диаметра — полюсами шара. Поверхность шара называется сферой: замкнутый шар включает эту сферу, открытый шар — исключает.
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
Неустойчивость Рэлея — Тейлора — самопроизвольное нарастание возмущений давления, плотности и скорости в газообразных и жидких средах с неоднородной плотностью, находящихся в гравитационном поле либо движущихся с ускорением.
Суперэллипс — геометрическая кривая, задаваемая в декартовых координатах уравнением
Суперквадрики — семейство геометрических поверхностей, определяемых уравнением эллипсоида и других поверхностей второго порядка, где показатели степени 2 заменены произвольным числом. Их можно считать трёхмерными аналогами кривых Ламе (суперэллипсов).
Суперэллипсоид — геометрическое тело, поперечными сечениями которого являются суперэллипсы с одним и тем же показателем степени r, а вертикальные сечения — суперэллипсы с одним и тем же показателем степени t. Некоторые суперэллипсоиды являются суперквадриками, однако ни одно из этих семейств не является подмножеством другого.
Магнитные поверхностные уровни — квантовые уровни энергии электронов, совершающих движение по «скачущим» траекториям вдоль поверхности металла, параллельно которой приложено внешнее магнитное поле. Такие траектории, состоящие из идентичных повторяющихся участков, возникают при зеркальном отражении электронов поверхностью проводника. Энергия периодического движения электронов в направлении нормали к поверхности квантуется, образуя систему квантовых уровней, существенно отличающихся от уровней Ландау электронов, находящихся в объеме металла.