Теорема Уитни о вложении — утверждение дифференциальной топологии, согласно которому произвольное гладкое -мерное многообразие со счётной базой допускает гладкое вложение в -мерное евклидово пространство. Установлено Хасслером Уитни в 1938 году.
Блок-схема — это множество вместе с семейством подмножеств, члены которого удовлетворяют некоторым свойствам, которые считаются полезными для конкретного приложения. Эти приложения приходят из разных областей, включая планирование эксперимента, конечную геометрию, тестирование программного обеспечения, криптографию и алгебраическую геометрию. Рассматривалось много вариантов, но наиболее интенсивно изучались сбалансированные неполные блок-схемы, которые исторически были связаны со статистическими задачами при планировании эксперимента.
Критической точкой дифференцируемой функции называется точка, в которой её дифференциал обращается в нуль. Это условие эквивалентно тому, что в данной точке все частные производные первого порядка обращаются в нуль, геометрически оно означает, что касательная гиперплоскость к графику функции горизонтальна. В простейшем случае n=1 это значит, что производная в данной точке равна нулю. Это условие является необходимым для того, чтобы внутренняя точка области могла быть точкой локального минимума или максимума дифференцируемой функции.
Пучок — структура, используемая для установления отношений между локальными и глобальными свойствами или характеристиками некоторого математического объекта. Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.
Унимодулярная решётка — целая решётка с определителем . Последнее эквивалентно тому, что объём фундаментальной области решётки равен .
В математике конференс-матрица (также называемая C-матрица, конференц-матрица) — это квадратная матрица C с нулями на диагонали, и с +1 и −1 вне диагонали такая, что CTC кратна единичной матрице I. Таким образом, если матрица C имеет порядок n, то CTC = (n−1)I. Некоторые авторы дают более общее определение, требуя наличия нуля в каждой строке и в каждом столбце, но не обязательно на диагонали.
Рациональная нормальная кривая — гладкая рациональная кривая степени n в n-мерном проективном пространстве Она является одним из сравнительно простых проективных многообразий, более формально, она является образом вложения Веронезе, применённого к проективной прямой.
Задача об иголке состоит в определении минимальной площади фигуры на плоскости, в которой единичный отрезок, «иглу», можно развернуть на 180 градусов, вернув его в исходное положение с обращённой ориентацией. Такое возможно проделать в круге радиуса 1/2. Другой пример — фигура, ограниченная дельтоидой, — показан на картинке, он имеет меньшую площадь.
Экзотическая сфера — гладкое многообразие М, которое гомеоморфно, но не диффеоморфно стандартной n-сфере.
Характеризация запрещёнными графами — это метод описания семейства графов или гиперграфов путём указания подструктур, которым запрещено появляться внутри любого графа в семействе.
Концентрация меры — принцип, согласно которому при определённых достаточно общих и не слишком обременительных ограничениях значение функции большого числа переменных почти постоянно. Например, большинство пар точек на единичной сфере большой размерности находятся на расстоянии, близком к друг от друга.
Теория комбинаторных схем — это часть комбинаторики, рассматривающая существование, построение и свойства семейств конечных множеств, структура которых удовлетворяет обобщённым концепциям равновесия и/или симметрии. Эти концепции не определены точно, так что объекты широкого диапазона могут пониматься как комбинаторные схемы. Так, в одном случае комбинаторные схемы могут представлять собой пересечения множеств чисел, как в блок-схемах, а в другом случае могут отражать расположение элементов в судоку.
Теорема Рота — результат аддитивной комбинаторики, частный случай теоремы Семереди для прогрессий длины 3; утверждает присутствие арифметических прогрессий в любых достаточно плотных множествах.
Гипотезы Вейля — математические гипотезы о локальных дзета-функциях проективных многообразий над конечными полями.
Онлайновое машинное обучение — это метод машинного обучения, в котором данные становятся доступными в последовательном порядке и используются для обновления лучшего предсказания для последующих данных, выполняемого на каждом шаге обучения. Метод противоположен пакетной технике обучения, в которой лучшее предсказание генерируется за один раз, исходя из полного тренировочного набора данных. Онлайновое обучение является общей техникой, используемой в областях машинного обучения, когда невозможна тренировка по всему набору данных, например, когда возникает необходимость в алгоритмах, работающих с внешней памятью. Метод используется также в ситуациях, когда алгоритму приходится динамически приспосабливать новые схемы в данных или когда сами данные образуются как функция от времени, например, при предсказании цен на фондовом рынке. Алгоритмы онлайнового обучения могут быть склонны к катастрофическим помехам, проблеме, которая может быть решена с помощью подхода пошагового обучения.
Граф Геймса — это наибольший из известных локально линейных сильно регулярных графов. Его параметры как сильно регулярного графа равны (729,112,1,20). Это значит, что граф имеет 729 вершин и 40824 рёбер. Каждое ребро находится в единственном треугольнике и каждая несмежная пара вершин имеет в точности 20 общих соседей. Граф назван именем Ричарда А. Геймса, который предложил его построение в неопубликованной переписке и написал о связанных конструкциях.
Неравенство Фишера — это необходимое условие существования сбалансированной неполной блок-схемы, то есть системы подмножеств, которые удовлетворяют определённым предписанным условиям в комбинаторной математике. Неравенство описал Рональд Фишер, специалист по популяционной генетике и статистике, который изучал планирование эксперимента, изучая различия среди некоторых отличающихся разновидностей растений при различных условиях произрастания, называемых блоками.
Пространство циклов неориентированного графа — линейное пространство над полем , состоящее из его эйлеровых подграфов. Размерность этого пространства называется контурным рангом графа. С точки зрения алгебраической топологии циклическое пространство является первой группой гомологий графа.
Асимптотическая размерность метрического пространства — аналог размерности Лебега на большой шкале. Асимптотическая размерность имеет важные приложения в геометрическом анализе и теории индексов.