Решето́ Эратосфе́на — алгоритм нахождения всех простых чисел до некоторого целого числа n, который приписывают древнегреческому математику Эратосфену Киренскому. Название алгоритма говорит о принципе его работы: алгоритм осуществляет фильтрацию списка чисел от 2 до n. По мере прохождения списка составные числа исключаются, а простые остаются.
Генератор псевдослучайных чисел — алгоритм, порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению.
Факториза́цией натурального числа называется его разложение в произведение простых множителей. Существование и единственность такого разложения следует из основной теоремы арифметики.
Вопрос определения того, является ли натуральное число простым, известен как проблема простоты.
Числа Ферма́ — числа вида , где .
Решето́ А́ткина — алгоритм нахождения всех простых чисел до заданного целого числа N. Алгоритм был создан А. О. Л. Аткином и Д. Ю. Бернштайном в 2003 году. Заявленная авторами асимптотическая скорость работы алгоритма соответствует скорости лучших ранее известных алгоритмов просеивания, но в сравнении с ними решето Аткина требует меньше памяти.
163 — натуральное число, расположенное между числами 162 и 164.
Число Армстронга — натуральное число, которое в данной системе счисления равно сумме своих цифр, возведённых в степень, равную количеству его цифр. Иногда, чтобы считать число таковым, достаточно, чтобы степени, в которые возводятся цифры, были равны m — тогда число можно назвать m-самовлюблённым.
Решето Сундара́ма — детерминированный алгоритм нахождения всех простых чисел до некоторого целого числа . Разработан индийским студентом Сундарамом в 1934 году.
Метод квадратичного решета — метод факторизации больших чисел, разработанный Померанцем в 1981 году. Долгое время превосходил другие методы факторизации целых чисел общего вида, не имеющих простых делителей, порядок которых значительно меньше . Метод квадратичного решета представляет собой разновидность метода факторных баз . Этот метод считается вторым по быстроте. И до сих пор является самым быстрым для целых чисел до 100 десятичных цифр и устроен значительно проще чем общий метод решета числового поля. Это универсальный алгоритм факторизации, так как время его выполнения исключительно зависит от размера факторизуемого числа, а не от его особой структуры и свойств.
Общий метод решета числового поля — метод факторизации целых чисел. Является наиболее эффективным алгоритмом факторизации чисел длиной более 110 десятичных знаков. Сложность алгоритма оценивается эвристической формулой
Счастли́вое число́ в теории чисел — натуральное число из множества, генерируемого «решетом», аналогичным решету Эратосфена, которое генерирует простые числа.
Суперсовершенное число — натуральное число n, такое, что:
Рациональное решето — это алгоритм общего вида для разложения целых чисел на простые множители. Алгоритм является частным случаем общего метода решета числового поля. Хотя он менее эффективен, чем общий алгоритм, концептуально он проще. Алгоритм может помочь понять, как работает общий метод решета числового поля.
Приятельские числа — два или более натуральных числа с одинаковым индексом избыточности, отношением суммы делителей чисел и самого числа. Два числа с одинаковой избыточностью образуют приятельскую пару, n чисел с одинаковой избыточностью образуют приятельский n-кортеж.
Аддити́вная тео́рия чи́сел — раздел теории чисел, возникший при изучении задач о разложении целых чисел на слагаемые заданного вида.