Ме́ра мно́жества — числовая характеристика множества, интуитивно её можно понимать как массу множества при некотором распределении массы по пространству. Понятие меры множества возникло в теории функций вещественной переменной при развитии понятия интеграла.
σ-алгебра — алгебра множеств, замкнутая относительно операции счётного объединения. Сигма-алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей.
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
Ме́ра Лебе́га на — мера, обобщающая понятия длины отрезка, площади фигуры и объёма тела на произвольное -мерное евклидово пространство. Говоря более формально, мера Лебега является продолжением меры Жордана на более широкий класс множеств.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Ле́мма Фату́ — техническое утверждение, используемое при доказательстве различных теорем в функциональном анализе и теории вероятностей. Оно даёт одно из условий, при которых предел почти всюду сходящейся функциональной последовательности будет суммируемым.
Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.
Последовательность функций сходится почти всюду к предельной функции, если множество точек, для которых сходимость отсутствует, имеет нулевую меру.
Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).
Си́гма-коне́чная ме́ра в функциональном анализе — мера такая, что всё пространство может быть представлено в виде счётного объединения измеримых множеств конечной меры.
Стохастическое дифференциальное уравнение (СДУ) — дифференциальное уравнение, в котором один член или более имеют стохастическую природу, то есть представляют собой стохастический (случайный) процесс. Таким образом, решения уравнения также оказываются стохастическими процессами. Наиболее известный и часто используемый пример СДУ — уравнение с членом, описывающим белый шум. Однако существуют и другие типы случайных флуктуаций, например скачкообразный процесс.
Арифметическая функция — функция, определённая на множестве натуральных чисел и принимающая значения из множества комплексных чисел .
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
В математике теория момента остановки или марковский момент времени связана с проблемой выбора времени, чтобы принять определённое действие, для того чтобы максимизировать ожидаемое вознаграждение или минимизировать ожидаемые затраты. Проблема момента остановки может быть найдена в области статистики, экономики и финансовой математики. Самым ярким примером, относящимся к моменту остановки, является Задача о разборчивой невесте. Проблема момента остановки часто может быть указана в форме уравнения Беллмана и поэтому часто решается с помощью динамического программирования.
Спектральная мера - это отображение, определённое на -алгебре подмножеств заданного множества, значения которого являются ортогональными проекторами в гильбертовом пространстве.
В математическом анализе множество меры 0, также известное как «множество с нулевым содержимым» — измеримое по Лебегу множество действительных чисел, имеющее меру ноль. Его можно охарактеризовать как множество, которое можно покрыть счётным объединением интервалов произвольно малой общей длины.