Спектр в физике — скалярная функция частоты , длины волны или, реже, другой физической величины, определяющая «относительную представленность» значений данной величины в изучаемом объекте: сложном сигнале, многокомпонентной среде и прочем. С точностью до нормировки совпадает с плотностью или рядом распределения соответствующей величины. В составных понятиях, например спектр поглощения или спектр испускания, слово спектр по сути означает «спектральный состав» изучаемого явления.
Спектра́льная ли́ния — узкий участок энергетического спектра, где интенсивность излучения усилена либо ослаблена по сравнению с соседними областями спектра. В первом случае линия называется эмиссионной линией, во втором — линией поглощения. Положение линии в электромагнитном спектре обычно задаётся длиной волны, частотой или энергией фотона. Кроме электромагнитного спектра, спектральные линии могут возникать в спектрах энергии частиц, в спектрах звуковых колебаний и вообще любых волновых процессов. Ниже, если нет специальных оговорок, имеются в виду электромагнитные спектры.
Полярное сияние, северное сияние, южное сияние, аврора, устар. «па́зори» — атмосферное оптическое явление, свечение (люминесценция) верхних слоёв атмосфер планет, возникающее вследствие взаимодействия магнитосферы планеты с заряженными частицами солнечного ветра.
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым радиоизлучением.
Телеско́п — прибор, с помощью которого можно наблюдать отдалённые объекты путём сбора электромагнитного излучения.
Планета́рная тума́нность — астрономический объект, представляющий собой оболочку ионизированного газа вокруг центральной звезды, белого карлика.
Фотоси́нтез — сложный химический процесс преобразования энергии видимого света в энергию химических связей органических веществ при участии фотосинтетических пигментов.
Солнечная корона — верхний, самый разреженный и горячий слой атмосферы Солнца. Состоит из плазмы.
Озо́новый слой — часть стратосферы на высоте от 20 до 25 км (в тропических широтах 25—30 км, в умеренных 20—25, в полярных 15—20), с наибольшим содержанием озона (вещества, молекула которого состоит из трёх атомов кислорода, O3), образующегося в результате воздействия ультрафиолетового излучения Солнца на молекулярный кислород (O2). При этом с наибольшей интенсивностью, именно благодаря процессам диссоциации кислорода, атомы которого затем образуют озон, происходит поглощение ближней (к видимому свету) части ультрафиолета солнечного спектра. Кроме того, диссоциация озона под воздействием ультрафиолетового излучения приводит к поглощению наиболее жёсткой его части.
В физике излучение — передача энергии в форме волн или частиц через пространство или через материальную среду. Это понятие включает в себя:
- электромагнитное излучение — радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение (γ);
- излучение частиц — альфа-излучение (α), бета-излучение (β), нейтронное и нейтринное излучение ;
- акустическое излучение — ультразвуковые, звуковые и сейсмические волны ;
- гравитационное излучение — излучение, которое принимает форму гравитационных волн, или рябь в кривизне пространства-времени.
Диффу́зное излуче́ние не́ба — солнечное излучение, достигающее земной поверхности после того, как оно было рассеяно на молекулах или твёрдых частицах в атмосфере. Из всего излучения Солнца, рассеивающегося в атмосфере, около двух третей в конечном счёте достигает Земли как диффузное излучение.
Се́рия Ла́ймана — серия спектральных линий в спектре атома водорода. Эта серия образуется при переходах электронов с возбуждённых энергетических уровней на первый невозбуждённый уровень основного состояния атома водорода в спектре излучения и с первого уровня на все остальные в спектре поглощении.
Два́жды ионизи́рованный кислоро́д — ион O2+, а также газ, состоящий из таких ионов (обозначение дважды ионизированного кислорода принятое в спектроскопии [O III]).
Астроклимат — совокупность атмосферных условий, влияющих на качество астрономических наблюдений. Важнейшие из них — прозрачность воздуха, степень его однородности, величина фонового свечения атмосферы, суточные перепады температуры и сила ветра. В оптическом диапазоне прозрачность земной атмосферы достаточно велика: свет звезды, находящейся в зените, при наблюдении с уровня моря ослабляется на 25-50 %, а с высоты современной горной обсерватории в среднем на 20 %. В ультрафиолетовом (УФ) диапазоне прозрачность атмосферы резко снижается: для волн короче 280 нм она практически непрозрачна. В инфракрасном (ИК) диапазоне прозрачность атмосферы очень неоднородна: существует несколько мощных полос поглощения молекулами кислорода и воды. Поэтому для наблюдения в близком ИК диапазоне телескопы устанавливают в сухих высокогорных районах, например в чилийской пустыне Атакама или на вершинах древних гавайских вулканов.
CW Льва или IRC +10216 является наиболее изученной углеродной звездой, которая находится на расстоянии 650 световых лет от Земли в созвездии Льва. Несмотря на исполинские размеры, в оптическом диапазоне она светит очень тускло и потому видна только в большие телескопы. Звезда окружена толстой пылевой оболочкой. В результате этого основная излучаемая энергия приходится на инфракрасный диапазон: IRC +10216 является самым ярким объектом в небе на длине волны 10 мкм.
Атмосферная оптика — раздел физики атмосферы, изучающий процессы распространения оптического излучения в атмосфере. Атмосферная оптика исследует физические и химические процессы, которые определяют оптическое состояние атмосферы, механизмы формирования и изменения климата, основанные на оптически значимых составляющих атмосферы, а также процессы в атмосфере, определяющие радиационный режим и климат Земли. В рамках физической оптики также разрабатываются методы исследования окружающей среды.
Абсорбционная спектроскопия или спектроскопия поглощения — спектроскопический метод, при использовании которого измеряют поглощение излучения при прохождении через образец в зависимости от частоты или длины волны. Образец частично поглощает энергию, то есть фотоны источника излучения. Интенсивность поглощения изменяется в зависимости от частоты, и такое изменение представляют в виде спектра поглощения. Метод абсорбционной спектроскопии позволяет проводить измерения по всему электромагнитному спектру. Применяется для определения концентрации веществ в растворах. Обладает рядом ценных качеств: возможность одновременного получения качественных и количественных данных, большая информация о химической природе вещества, высокая скорость анализа, высокая чувствительность метода, возможность анализа веществ во всех агрегатных состояниях, возможность анализа смесей без их разделения на компоненты, возможность многократного использования пробы для повторного исследования, позволяет исследовать микроскопические объекты, возможность применения ЭВМ для обработки данных.
Субмиллиметровая астрономия — раздел наблюдательной астрономии, связанный с наблюдениями в субмиллиметровом диапазоне длин волн. Астрономы помещают субмиллиметровый диапазон между далёким инфракрасным диапазоном и микроволновым диапазоном, то есть в области длин волн от нескольких сотен микрометров до миллиметра. В субмиллиметровой астрономии единицей измерения длин волн зачастую является микрон.
Диффузные полосы межзвёздного поглощения — спектральные полосы, обусловленные поглощением межзвёздной средой света, испускаемого звёздами. Слово диффузный в их наименовании отражает размытый характер этих полос, что указывает на молекулярную структуру поглощающего вещества. К настоящему времени обнаружено более 500 диффузных полос в инфракрасном и видимом диапазонах спектров различных звёзд, однако происхождение большинства этих полос по-прежнему не известно. В земных условиях регистрация диффузных полос существенно осложнена их экранированием земной атмосферой. Поэтому наиболее надёжными считаются спектры полученные за пределами Земли, например, космическим телескопом Хаббл. Однако, даже эти спектры нуждаются в коррекции ввиду перекрывания диффузных полос с эмиссионными полосами соответствующей звезды.
Астрономическая спектроскопия — это раздел астрономии, использующий методы спектроскопии для измерения спектра электромагнитного излучения, в том числе и видимого, которое излучается звездами и другими небесными объектами. Звёздный спектр может выявить многие свойства звёзд, такие как их химический состав, температуру, плотность, массу, расстояние, светимость и относительное движение с помощью измерений доплеровского сдвига. Спектроскопия также используется для изучения физических свойств многих других типов небесных объектов, таких как планеты, туманности, галактики и активные ядра галактик.