Тео́рия гра́фов — раздел дискретной математики, изучающий графы, одна из ветвей топологии. В самом общем смысле граф — это множество точек, которые соединяются множеством линий. Теория графов включена в учебные программы для начинающих математиков, поскольку:
- как и геометрия, обладает наглядностью;
- как и теория чисел, проста в объяснении и имеет сложные нерешённые задачи;
- не имеет громоздкого математического аппарата ;
- имеет выраженный прикладной характер.
Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре.
В теории графов теорема Кёнига , доказанная Денешем Кёнигом в 1931, утверждает эквивалентность задач нахождения наибольшего паросочетания и наименьшего вершинного покрытия в двудольных графах. Независимо была открыта, в том же 1931, Йенё Эгервари в несколько более общем виде для случая взвешенных графов.
Теорема Рамсея — теорема комбинаторики о разбиениях множеств, сформулированная и доказанная английским математиком Фрэнком Рамсеем в 1930 году. Встречается в литературе в разных формулировках. Эта теорема положила начало теории Рамсея.
Система Штейнера — вариант блок-схем, точнее, t-схемы с λ = 1 и t ≥ 2.
В теории графов паросочетание, или независимое множество рёбер в графе, — это набор попарно несмежных рёбер.
В теории графов рёберным графом L(G) неориентированного графа G называется граф L(G), представляющий соседство рёбер графа G.
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом.
В теории графов графом гиперкуба Qn называется регулярный граф с 2n вершинами, 2n−1n рёбрами и n рёбрами, сходящимися в одной вершине. Его можно получить как одномерный скелет геометрического гиперкуба. Например, Q3 — это граф, образованный 8 вершинами и 12 рёбрами трёхмерного куба. Граф можно получить другим образом, отталкиваясь от семейства подмножеств множества с n элементами путём использования в качестве вершин все подмножества и соединением двух вершин ребром, если соответствующие множества отличаются только одним элементом.
Фактор графа G — это остовный подграф, то есть подграф, имеющий те же вершины, что и граф G. k-фактор графа — это остовный k-регулярный подграф, а k-факторизация разбивает рёбра графа на непересекающиеся k-факторы. Говорят, что граф G k-факторизуем, если он позволяет k-разбиение. В частности, множество рёбер 1-фактора — это совершенное паросочетание, а 1-разложение k-регулярного графа — это рёберная раскраска k цветами. 2-фактор — это набор циклов, которые покрывают все вершины графа.
Двенадцатеричный путь или двенадцать сценариев — это систематическая классификация 12 связанных перечислительных задач, касающихся двух конечных множеств, которые включают классические задачи подсчёта перестановок, сочетаний, мультимножеств и разбиений либо множества, либо числа. Идею классификации приписывают Джиану-Карло Роту, а название двенадцатеричный путь предложил Джоэл Спенсер по аналогии с термином восьмеричный путь из физики, который в свою очередь произошел от понятия восьмеричный путь в буддизме. Название намекает, что используя те же подходы в 12 случаях, но с небольшими изменениями в условиях, мы получаем 12 разных результатов.
Лемма регулярности Семереди — лемма из общей теории графов, утверждающая, что вершины любого достаточно большого графа можно разбить на конечное число групп таких, что почти во всех двудольных графах, соединяющих вершины из двух разных групп, рёбра распределены между вершинами почти равномерно. При этом минимальное требуемое количество групп, на которые нужно разбить множество вершин графа, может быть сколь угодно большим, но количество групп в разбиении всегда ограничено сверху.
Кососимметрический граф — ориентированный граф, изоморфный своему собственному транспонированному графу. Этот граф образуется путём обращения всех дуг с изоморфизмом и является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Зоногон — центрально-симметричный выпуклый многоугольник.
Теорема Петерсена — одна из самых ранних теорем теории графов, названная в честь Юлиуса Петерсена. Определение теоремы может быть сформулировано следующим образом:
Теорема Петерсена. Любой кубический двусвязный граф содержит в себе совершенное паросочетание.