Теорема Вика для функционального интеграла

Перейти к навигацииПерейти к поиску

Теорема Вика для функционального интеграла — это обобщение теоремы Вика для многочлена от координат многомерного Гауссового вектора на случай континуального распределения Гаусса. Широко используется в аппарате функциональных интегралов.

Формулировка

Теорема.

Пусть случайное поле отвечает континуальному распределению Гаусса с нулевым матожиданием, то есть . Тогда для средних значений произведений величин вида верно следующее:

если чётное, и

если нечётное.

Под подразумевается разбиение множества на пар , суммирование же идёт по всем возможным различным разбиениям на такие пары.

Примеры

Для произведения 4 элементов: .

Для произведения 6 элементов:

,

причём суммирование производится по всем возможным спариваниям выбранным из множества , например, или (всего таких спариваний 15).

Аналогично для случаев 8 и более элементов

Использование

Известно, что если Гауссова плотность распределения описывается формулой

,

то

.

То есть любую корреляционную функцию можно по теореме Вика выразить через комбинации , то есть, например

.

См. также

Литература

  • Васильев А. Н. Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике. — Издательство Петербургского института ядерной физики (ПИЯФ), 1998. — ISBN 5-86763-122-2.