Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Жорданова матрица — квадратная блочно-диагональная матрица над полем , с блоками вида
Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Нормальная матрица — комплексная квадратная матрица , коммутирующая со своей эрмитово-сопряжённой матрицей:
- .
В линейной алгебре, фробениусовой нормальной формой линейного оператора А называется каноническая форма его матрицы, соответствующая минимальному разложению линейного пространства в прямую сумму инвариантных относительно А подпространств, которые могут быть получены как линейная оболочка некоторого вектора и его образов под действием А. Она будет блочно-диагональной матрицей, состоящей из фробениусовых клеток вида
Альтернати́ва Фредго́льма — совокупность теорем Фредгольма о разрешимости интегрального уравнения Фредгольма второго рода.
В линейной алгебре сопровожда́ющей ма́трицей унитарного многочлена
Аннули́рующий многочле́н для ма́трицы — многочлен , значение которого для данной квадратной матрицы равно нулевой матрице. Теорема Гамильтона-Кэли утверждает, что значение характеристического многочлена для квадратной матрицы равно нулевой матрице, а значит для каждой квадратной матрицы существует, по крайней мере, один аннулирующий многочлен степени, совпадающей с порядком матрицы.
Минима́льный многочле́н ма́трицы — аннулирующий унитарный многочлен минимальной степени.
Разложение Шура — разложение матрицы на унитарную, верхнюю треугольную и обратную унитарную матрицы, названное именем Исая Шура.
Алгоритм вычисления собственных значений — алгоритм, позволяющий определить собственные значения и собственные векторы заданной матрицы. Создание эффективных и устойчивых алгоритмов для этой задачи является одной из ключевых задач вычислительной математики.
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется дефектной.
В математике, функциональное исчисление — теория, позволяющая применять математические функции к математическим операторам. Сейчас это ветвь функционального анализа, связанная со спектральной теорией.