Веще́ственное число́ — математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций.
Размерность Лебега или топологическая размерность — размерность, определённая посредством покрытий, важнейший инвариант топологического пространства. Размерность Лебега пространства обычно обозначается .
Ме́ра Лебе́га на — мера, обобщающая понятия длины отрезка, площади фигуры и объёма тела на произвольное -мерное евклидово пространство. Говоря более формально, мера Лебега является продолжением меры Жордана на более широкий класс множеств.
При́нцип Дирихле́ — простой, интуитивно понятный и часто полезный метод для доказательства утверждений о конечном множестве. Этот принцип часто используется в дискретной математике, где устанавливает связь между объектами («кроликами») и контейнерами («клетками») при выполнении определённых условий. В английском и некоторых других языках данное утверждение известно как «принцип голубей и ящиков», когда объектами являются голуби, а контейнерами — ящики.
Откры́тые (нерешённые) математи́ческие пробле́мы — задачи, которые рассматривались математиками, но до сих пор не решены. Часто имеют форму гипотез, которые предположительно верны, но нуждаются в доказательстве.
Теоре́ма Его́рова утверждает, что последовательность измеримых функций, сходящаяся почти всюду на некотором множестве, сходится равномерно на достаточно большом его подмножестве.
Изопериметри́ческое нера́венство — геометрическое неравенство, связывающее периметр замкнутой кривой на плоскости и площадь участка плоскости, ограниченной этой кривой. Этот термин также используется для различных обобщений данного неравенства.
Размерность Хаусдорфа, или хаусдорфова размерность — естественный способ определить размерность подмножества в метрическом пространстве. Размерность Хаусдорфа согласуется с нашими обычными представлениями о размерности в тех случаях, когда эти обычные представления есть. Например, в трёхмерном евклидовом пространстве хаусдорфова размерность конечного множества равна нулю, размерность гладкой кривой — единице, размерность гладкой поверхности — двум и размерность множества ненулевого объёма — трём. Для более сложных (фрактальных) множеств размерность Хаусдорфа может не быть целым числом.
Фибоначчиева система счисления — смешанная система счисления для целых чисел на основе чисел Фибоначчи F2=1, F3=2, F4=3, F5=5, F6=8 и т. д.
Теорема Дирихле о единицах — теорема алгебраической теории чисел, описывающая ранг подгруппы обратимых элементов кольца алгебраических целых числового поля .
Непреры́вность действи́тельных чи́сел — свойство системы действительных чисел , которым не обладает множество рациональных чисел . Иногда вместо непрерывности говорят о полноте системы действительных чисел. Существует несколько различных формулировок свойства непрерывности, наиболее известные из которых: принцип непрерывности действительных чисел по Дедекинду, принцип вложенных отрезков Коши — Кантора, теорема о точной верхней грани. В зависимости от принятого определения действительного числа, свойство непрерывности может либо постулироваться как аксиома — в той или иной формулировке, либо доказываться в качестве теоремы.
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.
Теорема Сарда — теорема математического анализа с приложениями в дифференциальной геометрии и топологии, теории катастроф и теории динамических систем.
Теорема Шпильрайна — одна из центральных теорем теории упорядоченных множеств, впервые сформулированная и доказанная польским математиком Эдвардом Шпильрайном в 1930 году.
abc-гипотеза — утверждение в теории чисел, сформулированное независимо друг от друга математиками Дэвидом Массером в 1985 году и Джозефом Эстерле в 1988 году.
Лемма Шепли — Фолкмана связывает две операции выпуклой геометрии — сложение по Минковскому и выпуклую оболочку. Лемма имеет приложения в ряде дисциплин, в том числе в математической экономике, оптимизации и теории вероятностей. Лемма и связанные с ней результаты позволяют дать утвердительный ответ на вопрос «Близка ли к состоянию выпуклости сумма нескольких множеств?».
Концентрация меры — принцип, согласно которому при определённых достаточно общих и не слишком обременительных ограничениях значение функции большого числа переменных почти постоянно. Например, большинство пар точек на единичной сфере большой размерности находятся на расстоянии, близком к друг от друга.
Теория диофантовых приближений — раздел теории чисел, изучающий приближения вещественных чисел рациональными; назван именем Диофанта Александрийского.