Функциона́льный ана́лиз — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения. Наиболее важными примерами таких пространств являются пространства функций.
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа.
Нормированное пространство — векторное пространство с заданной на нём нормой; один из основных объектов изучения функционального анализа.
Топологи́ческое ве́кторное простра́нство, или топологи́ческое лине́йное простра́нство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны. Термин используется в основном в функциональном анализе.
Линейный непрерывный оператор , действующий из линейного топологического пространства X в линейное топологическое пространство Y — это линейное отображение из X в Y, обладающее свойством непрерывности.
Сопряжённый оператор — обобщение понятия эрмитово-сопряжённой матрицы для бесконечномерных пространств.
Теория операторов — раздел функционального анализа, который изучает свойства непрерывных линейных отображений между нормированными пространствами. Вообще говоря, оператор — это аналог самой обычной функции или матрицы в конечномерном пространстве. Но оператор может действовать и в бесконечномерных пространствах.
Компа́ктный опера́тор — понятие функционального анализа. Компактные операторы естественно возникают при изучении интегральных уравнений, а их свойства схожи со свойствами операторов в конечномерных пространствах. Компактные операторы также часто называют вполне непрерывными.
Ба́зис — упорядоченный набор векторов в векторном пространстве или модуле, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Пространство непрерывных функций — линейное нормированное пространство, элементами которого являются непрерывные на отрезке функции . Норма в этом пространстве определяется следующим образом:
Захид Исмаил оглы Халилов — азербайджанский математик и механик. Академик и президент (1962—1967) Академии наук Азербайджанской ССР.
Рефлексивное пространство — банахово пространство , совпадающее при каноническом вложении со своим вторым сопряженным .
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
Интерполяционное пространство — понятие функционального анализа, описывающее свойства банаховых пространств.
Теорема Банаха об обратном операторе — один из трёх основных принципов «банаховой» теории линейных операторов.
Конечномерный оператор — ограниченный линейный оператор в банаховом пространстве, множество значений которого конечномерно.
Михаил Иосифович Кадец — советский и украинский математик.