Отображение называется проективной инволюцией, если и сохраняет двойные (или сложные) отношения.
Свойства
Проективная инволюция однозначно восстанавливается по трём точкам.
Если — проективное отображение прямой в себя и — проективная инволюция.
Если — проективная инволюция окружности — инверсия с некоторым центром + возможная симметрия относительно .
Если — проективная инволюция коники — центральная проекция.
Формулировка
Даны четыре точки общего положения (никакие 3 точки не лежат на одной прямой) и прямая , не проходящая через них. Пусть пересекает прямые в точках соответственно и конику, проходящую через в точках . Тогда на прямой существует проективная инволюция
Доказательство
Рассмотрим проективное преобразование такое, что (такое преобразование существует, так как проективное преобразование прямой определяется заданием трёх пар соответствующих по отображению точек. Это утверждение часто называют основной теоремой проективной геометрии). Тогда из свойства 1 следует, что — проективная инволюция . Докажем, что . Из точки спроецируем четыре точки на конику , получим равенство двойных отношений , затем спроецируем эти точки из обратно на прямую , получим . Теперь применим преобразование к двойному отношению . Тогда , то есть . Из полученного равенства следует, что .
Утверждение, что доказывается аналогично. Таким образом, теорема доказана.
Вариации и обобщения
Теорема Дезарга об инволюции для треугольника
Рассмотрим все коники, проходящие через три точки общего положения, касательную в точке и произвольную прямую , не проходящую через эти точки. Пусть пересекает в точках соответственно, а конику в точках , тогда существует проективная инволюция
Двойственная теорема
Коника вписана в четырехугольник , . Вне коники и не на прямых выбрана точка . Тогда существует проективная инволюция , меняющая местами пары прямых и касательные из к конике . Справедливость этой теоремы следует из проективного принципа двойственности.
Похожие исследовательские статьи
Кони́ческое сече́ние, или ко́ника, — пересечение плоскости с поверхностью прямого кругового конуса. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Кроме того, параболу можно рассматривать как предельный случай эллипса, один из фокусов которого бесконечно удалён.
Теоре́ма Па́ппа — это классическая теорема проективной геометрии.
Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году.
Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре.
Проекти́вная пло́скость — двумерное проективное пространство. Важным частным случаем является вещественная проективная плоскость.
Проективная геометрия — раздел геометрии, изучающий проективные плоскости и пространства. Главная особенность проективной геометрии состоит в принципе двойственности, который прибавляет изящную симметрию во многие конструкции.
Важное свойство проективной плоскости — «симметрия» ролей, которые играют точки и прямые в определениях и теоремах, и двойственность является формализацией этой концепции. Имеются два подхода к концепции двойственности: один, использующий язык «принципа двойственности», позволяет объявить ряд теорем двойственными друг к другу, при этом двойственная к верной теореме тоже верна; и другой, функциональный подход, основанный на специальном отображении двойственности. Связь между подходами состоит в том, что двойственная теорема получается применением отображения двойственности к каждому объекту исходной. Возможен и координатный подход.
Тавтологией в логике называется тождественно истинное высказывание, инвариантное относительно значений своих компонентов.
Поризм Понселе — классическая теорема проективной геометрии. Назван в честь Жан-Виктора Понселе.
Полином Жегалкина — многочлен над полем , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ).
Факторизация с помощью эллиптических кривых — алгоритм факторизации натурального числа с использованием эллиптических кривых. Данный алгоритм имеет субэкспоненциальное время выполнения. Является третьим по скорости работы после общего метода решета числового поля и метода квадратичного решета.
Теорема о 9 точках на кубической кривой — теорема алгебраической геометрии, которая гласит, что
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Поверхность Веронезе — алгебраическая поверхность в пятимерном проективном пространстве, которая реализуется как образ вложения Веронезе. Существует также обобщение вложения Веронезе на произвольные размерности проективных пространств. Названа в честь итальянского математика Джузеппе Веронезе.
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности. Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон. Внеописанный четырёхугольник тесно связан с описанным четырёхугольником.
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
Теорема Дроз-Фарни — это свойство двух перпендикуляров, проходящих через ортоцентр произвольного треугольника. Линия, проходящая через — прямая Дроз-Фарни.
Модель Пуанкаре в верхней полуплоскости — это верхняя половина плоскости , обозначаемая ниже как H, вместе с метрикой, которая делает её моделью двумерной гиперболической геометрии.
K-теория — математическая теория, изучающая кольца, порождённые векторными расслоениями над топологическими пространствами или схемами. В алгебраической топологии эта обобщённая теория когомологий называется топологической K-теорией. В алгебре и алгебраической геометрии соответствующий раздел называется алгебраической K-теорией. Также она играет важную роль в операторных алгебрах и её можно рассматривать как теорию определенных видов инвариантов больших матриц.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.