Правильный многогранник или плато́ново тело — это выпуклый многогранник, грани которого являются равными правильными многоугольниками, обладающий пространственной симметрией следующего типа: все многогранные углы при его вершинах правильные и равны друг другу.
Теорема Брунна — Минковского — классическая теорема выпуклой геометрии:
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Геометрия Лобачевского — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных аксиомах, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью, а также обобщения на другие размерности.
Параллелоэдр ― выпуклый многогранник, параллельным перенесением которого можно замостить пространство, то есть покрыть евклидово пространство так, чтобы многогранники не входили друг в друга и не оставляли пустот между собой.
Алексе́й Васи́льевич Погоре́лов — советский математик. Специалист в области выпуклой и дифференциальной геометрии, теории дифференциальных уравнений и теории оболочек. Академик АН СССР / РАН. Лауреат Ленинской премии.
Изопериметри́ческое нера́венство — геометрическое неравенство, связывающее периметр замкнутой кривой на плоскости и площадь участка плоскости, ограниченной этой кривой. Этот термин также используется для различных обобщений данного неравенства.
Изгибаемый многогранник — многогранник, чью пространственную форму можно изменить непрерывной во времени деформацией, при которой каждая грань не изменяет своих размеров, а деформация осуществляется только за счёт непрерывного изменения двугранных углов. Такая деформация называется непрерывным изгибанием многогранника.
Теорема Минковского о многогранниках — общее название двух теорем о существовании и единственности замкнутого выпуклого многогранника с заданными направлениями и площадями граней.
Теорема Александрова о развёртке — теорема о существовании и единственности замкнутого выпуклого многогранника с данной развёрткой, доказанная Александром Даниловичем Александровым. Единственность в этой теореме является обобщением теоремы Коши о многогранниках и имеет схожее доказательство.
Теорема Линделёфа — ряд результатов, установленных финским математиком Лоренцем Линделёфом или его сыном топологом Эрнстом Линделёфом:
- Теорема Линделёфа — утверждение комплексного анализа о существовании и свойствах непрерывного продолжения конформной функции.
- Теорема Линделёфа о многограннике — геометрический результат, согласно которому среди всех выпуклых многогранников трёхмерного евклидова пространства с данными направлениями граней и с данным объёмом наименьшую площадь поверхности имеет многогранник, описанный вокруг шара.
- Первая теорема Линделёфа — общетопологическое утверждение о том, что множество всех точек конденсации пространства со второй аксиомой счётности не более, чем счётно.
- Вторая теорема Линделёфа — общетопологический результат о том, что во всяком открытом покрытии пространства со второй аксиомой счётности можно выделить не более, чем счётное подпокрытие.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или на этих структурах. Проблемы комбинаторной геометрии простираются от конкретных «предметно»-комбинаторных вопросов — замощения, упаковка кругов на плоскости, формула Пика — до вопросов общих и глубоких, таких как гипотеза Борсука, проблема Нелсона — Эрдёша — Хадвигера.
Эта страница содержит список правильных многомерных многогранников (политопов) и правильных cоединений этих многогранников в евклидовом, сферическом и гиперболическом пространствах разных размерностей.
Лемма о руке — лемма в доказательстве теоремы Коши о многогранниках.
Теорема об инвариантности области утверждает, что образ непрерывного инъективного отображения Евклидова пространства в себя открыт.
Теорема монотонности Александрова — теорема о выпуклых многогранниках, доказанная А. Д. Александровым в 1937 году,,.
Зоногон — центрально-симметричный выпуклый многоугольник.
«Выпуклые многогранники» — монография Александра Даниловича Александрова. Оригинальное русское издание вышло в 1950 году; немецкий перевод в 1958 году. Расширенное издание на английском языке с дополнительными материалами Виктора Абрамовича Залгаллера, Л. А. Шора и Юрия Александровича Волкова вышло в 2005 году.