Теория чисел или высшая арифметика — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры для решения задач, возникающих в геометрии.
Алгебраическая кривая, или плоская алгебраическая кривая, — это геометрическое место (множество) точек на плоскости (O;x,y), которое определяется как множество нулей многочлена от двух переменных. Степенью (или порядком) n этой кривой называется степень этого многочлена. Алгебраические кривые степеней n = 1, 2, 3, …, 8 кратко называются прямыми, кониками, кубиками, квартиками, пентиками, секстиками, септиками, октиками соответственно. Например, единичная окружность — это алгебраическая кривая степени 2 (коника), так как она задаётся уравнением x2 + y2 − 1 = 0.
Поризм Понселе — классическая теорема проективной геометрии. Назван в честь Жан-Виктора Понселе.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Фёдор Алексеевич Богомолов — советский и американский математик, известный своими работами по алгебраической геометрии и теории чисел.
Алгебраическая поверхность — это алгебраическое многообразие размерности два. В случае геометрии над полем комплексных чисел алгебраическая поверхность имеет комплексную размерность два, а потому имеет размерность четыре как гладкое многообразие.
Теорема Хассе об эллиптических кривых, также называемая границей Хассе, даёт оценку числа точек на эллиптической кривой над конечным полем, причём ограничивает значения как сверху, так и снизу. Теорема Хассе эквивалентна определению абсолютного значения корней локальной дзета-функции Е. В этом виде её можно рассматривать как аналог гипотезы Римана для поля функций, ассоциированного с эллиптической кривой.
Степень трансцендентности — максимальное число алгебраически независимых элементов в расширении поля. Степень трансцендентности даёт возможность измерения величины расширения.
Теорема Римана — Роха связывает комплексный анализ связных компактных римановых поверхностей с чисто топологическим родом поверхности g, используя методы, которые могут быть распространены на чисто алгебраические ситуации.
Конгруэнц-дзета-функция — прототип для построения важной L-функции Хассе-Вейля, ряд вида
- ,
Глобальное поле — это поле одного из двух видов:
- поле алгебраических чисел, то есть конечное расширение поля рациональных чисел ,
Обратная задача Галуа — открытая проблема теории Галуа, поставленная в начале XIX века: является ли любая конечная группа группой Галуа некоторого расширения Галуа рациональных чисел ..
K3-поверхность — связная односвязная компактная комплексная поверхность, допускающая нигде не вырожденную голоморфную дифференциальную форму степени два. В алгебраической геометрии, где рассматриваются многообразия над полями иными, нежели комплексные числа, K3-поверхностью называется алгебраическая поверхность с тривиальным каноническим расслоением, не допускающая алгебраических 1-форм.
Выразимость в радикалах означает возможность выразить число или функцию через простейшие числа или функции при помощи извлечения корня целой степени и арифметических операций — сложения, вычитания, умножения, деления.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.