Теоре́ма Паска́ля — классическая теорема проективной геометрии.
Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.
Вневпи́санная окружность треугольника — окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон. У любого треугольника существует три вневписанных окружности.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону . В зависимости от типа треугольника высота может содержаться внутри треугольника, совпадать с его стороной или проходить вне треугольника у тупоугольного треугольника.
Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой . В зависимости от вида треугольника ортоцентр может находиться внутри треугольника, вне его или совпадать с вершиной. Ортоцентр относится к замечательным точкам треугольника и перечислен в энциклопедии центров треугольника Кларка Кимберлинга как точка X(4).
Центроид треугольника — точка пересечения медиан в треугольнике.
Прямая Симсона — прямая, проходящая через основания перпендикуляров на стороны треугольника из точки на его описанной окружности. Её существование опирается на теорему Симсона.
Точка Микеля — одна из замечательных точек четырёхугольника.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Набор окружностей Джонсона состоит из трёх окружностей одинакового радиуса r, имеющих одну общую точку пересечения H. В такой конфигурации окружности обычно имеют четыре точки пересечения — это общая точка пересечения H, через которую проходят все три окружности, и по дополнительной точке для каждой пары окружностей. Если любые две окружности не пересекаются они имеют лишь одну общую точку — H, и в этом случае считается, что H является и их попарной точкой пересечения также. Если же окружности совпадают, принимается за попарную точку пересечения точка, диаметрально противоположная точке H. Три точки попарных пересечений окружностей Джонсона образуют опорный треугольник Δ ABC фигуры. Конфигурация названа именем Роджера Артура Джонсона.
Точки Наполеона в геометрии — пара специальных точек на плоскости треугольника. Легенда приписывает обнаружение этих точек французскому императору Наполеону I, однако его авторство сомнительно. Точки Наполеона относятся к замечательным точкам треугольника и перечислены в Энциклопедии центров треугольника как точки X(17) и X(18).
В евклидовой геометрии теорема Массельмана — это свойство некоторых окружностей, определённых для произвольного треугольника.
Теорема Паппа о площадях — аналог теоремы Пифагора. Теорема дает соотношение между площадями трёх параллелограммов, образуемых построенных на трёх сторонах произвольного треугольника.
Теорема Микеля — утверждение в планиметрии, связанное с пересечением трёх окружностей, построенных вокруг вершин треугольника. Названа в честь французского математика Огюста Микеля. Эта теорема — один из нескольких результатов, касающийся окружностей в геометрии, полученный Микеле и опубликованных им в Journal de mathématiques pures et appliquées.
Лемма о шестой окружности утверждает следующее.
Теорема Дроз-Фарни — это свойство двух перпендикуляров, проходящих через ортоцентр произвольного треугольника. Линия, проходящая через — прямая Дроз-Фарни.
Точка Фейербаха — точка касания вписанной окружности к окружности девяти точек треугольника. Точка Фейербаха является касательной точкой треугольника, что означает то, что её определение не зависит от расположения и размеров треугольника. Точка внесена с кодом X(11) в энциклопедию центров треугольника Кларка Кимберлинга и названа именем Карла Вильгельма Фейербаха.
Ортополюс системы, состоящей из треугольника ABC и прямой линии ℓ в данной плоскости, является точкой, определяемой следующим образом.. Пусть A ′, B ′, C ′ — основания перпендикуляров, проведенных к прямой ℓ из вершин треугольника соответственно A, B, C. Пусть A ′′, B ′′, C ′′ — основания перпендикуляров, проведенных к соответствующим противоположным сторонам A, B, C указанного треугольника или к продолжениям этих сторон. Тогда три прямые линии A ′ A ′′, B ′ B ′′, C ′ C ′′, пересекутся в одной точке — в ортополюсе H. Благодаря своим многочисленным свойствам ортополюсы стали предметом серьезного изучения . Изучались некоторые ключевые понятия — определение линий, имеющих данный ортополюс и ортополюсные окружности.