Полупростая группа Ли — связная группа Ли, не содержащая нетривиальных связных разрешимых нормальных делителей. Иногда требование связности опускают.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями математики.
Представле́ние гру́ппы — вообще говоря, любое действие группы. Однако чаще всего под представлением группы понимается линейное представление группы, то есть действие группы на векторном пространстве. Иными словами, представление группы — это гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Коне́чное по́ле, или по́ле Галуа́ в общей алгебре — поле, состоящее из конечного числа элементов; это число называется поря́дком поля.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Полупростые модули — общеалгебраические модули, которые можно легко восстановить по их частям. Кольцо, являющееся полупростым модулем над самим собой, называется артиновым полупростым кольцом. Важный пример полупростого кольца — групповое кольцо конечной группы над полем характеристики ноль. Структура полупростых колец описывается теоремой Веддербёрна — Артина: все такие кольца являются прямыми произведениями колец матриц.
Характер представления группы — функция на группе, возвращающая след матрицы, соответствующей данному элементу в представлении.
L-функция Артина — это вид ряда Дирихле, связанный с представлением группы Галуа расширения числового поля. Эти функции были введены в 1923 Эмилем Артином, в связи с его работой в теории полей классов. Фундаментальные свойства этих функций, в частности гипотеза Артина, описанная ниже, оказались устойчивыми к легким доказательствам. Одной из целей предлагаемой неабелевой теории полей классов является включение комплексно-аналитических L-функций Артина в более широкую теорию, которая будет вытекать из автоморфных форм и программы Ленглендса. До сих пор лишь небольшая часть такой теории была построена на прочной основе.
Обратная задача Галуа — открытая проблема теории Галуа, поставленная в начале XIX века: является ли любая конечная группа группой Галуа некоторого расширения Галуа рациональных чисел ..
Программа Ленглендса — сеть далеко идущих математических гипотез о связях между теорией чисел и геометрией, предложенная Робертом Ленглендсом в 1967 и 1970 годы. Основная цель — связать группы Галуа в алгебраической теории чисел с автоморфными формами и теорией представлений алгебраических групп над локальными полями и аделями. Считается одним из крупнейших математических исследовательских проектов XX века, отмечалась Эдвардом Френкелем как «теория великого объединения математики».
Группа Лоренца является группой Ли симметрий пространства-времени в специальной теории относительности. Эта группа может быть реализована как набор матриц, линейных преобразований или унитарных операторов на некотором гильбертовом пространстве. Группа имеет различные представления. В любой релятивистски инвариантной физической теории эти представления как-то должны быть отражены. Сама физика должна быть сделана на их основе. Более того, специальная теория относительности вместе с квантовой механикой являются двумя физическими теориями, которые тщательно проверены и объединение этих двух теорий сводится к изучению бесконечномерных унитарных представлений группы Лоренца. Это имеет как историческую важность в основном течении в теоретической физике, так и связи с более спекулятивными теориями настоящего времени.
Теорема Ли — Колчина — это теорема теории представлений линейных алгебраических групп. Теорема Ли является аналогом для линейных алгебр Ли.
Представление группы Ли — это линейное действие группы Ли на векторном пространстве или, что то же самое, гладкий гомоморфизм группы Ли в группу обратимых операторов на векторном пространстве. Играет важную роль в изучении непрерывной симметрии в математике и теоретической физике. Представления групп Ли изучены довольно хорошо, основным инструментом их изучения является использование соответствующих «инфинитезимальных» представлений алгебр Ли.
Полупростая алгебра Ли — алгебра Ли, являющаяся прямой суммой простых алгебр Ли, то есть неабелевых алгебр Ли без нетривиальных идеалов.
Группа Фробениуса, или фробениусова группа — транзитивная группа перестановок на конечном множестве, такая, что каждый нетривиальный элемент фиксирует не более одной точки, и некоторый нетривиальный элемент фиксирует точку.