Геоме́трия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. В практических задачах геометрия позволяет предсказывать геометрические размеры тела, зная другие геометрические размеры этого тела с помощью известных геометрических законов.
Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.
Конти́нуум-гипо́теза — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет. В частности, это предположение означает, что для любого бесконечного множества действительных чисел всегда можно установить взаимно-однозначное соответствие либо между элементами этого множества и множеством целых чисел, либо между элементами этого множества и множеством всех действительных чисел.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой . В зависимости от вида треугольника ортоцентр может находиться внутри треугольника, вне его или совпадать с вершиной. Ортоцентр относится к замечательным точкам треугольника и перечислен в энциклопедии центров треугольника Кларка Кимберлинга как точка X(4).
Проекти́вная пло́скость — двумерное проективное пространство. Важным частным случаем является вещественная проективная плоскость.
Теоре́ма — математическое утверждение, истинность которого устанавливается путём доказательства. Доказательства теорем опираются на ранее доказанные теоремы и общепризнанные утверждения (аксиомы).
Евкли́дова геоме́трия — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида. Это геометрия ортогональной группы.
Аксиома Па́ша — одна из аксиом порядка в системе аксиом Гильберта евклидовой геометрии. В других системах аксиом является теоремой.
Аксиоматика Гильберта — система аксиом евклидовой геометрии. Разработана Гильбертом как более полная, нежели система аксиом Евклида.
Важное свойство проективной плоскости — «симметрия» ролей, которые играют точки и прямые в определениях и теоремах, и двойственность является формализацией этой концепции. Имеются два подхода к концепции двойственности: один, использующий язык «принципа двойственности», позволяет объявить ряд теорем двойственными друг к другу, при этом двойственная к верной теореме тоже верна; и другой, функциональный подход, основанный на специальном отображении двойственности. Связь между подходами состоит в том, что двойственная теорема получается применением отображения двойственности к каждому объекту исходной. Возможен и координатный подход.
Прямая Ньютона — прямая, соединяющая середины диагоналей четырёхугольника.
Конфигурацией Мёбиуса или тетраэдрами Мёбиуса называется конфигурация в евклидовом пространстве или проективном пространстве, состоящая из двух взаимно вписанных тетраэдров — каждая вершина одного тетраэдра лежит на плоскости, проходящей через грань другого тетраэдра и наоборот. Таким образом, в результирующей системе восьми точек и восьми плоскостей каждая точка лежит на четырёх плоскостях, и каждая плоскость содержит четыре точки.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Четырёхугольник Саккери — четырёхугольник с двумя равными боковыми сторонами, перпендикулярными основанию. Назван в честь Джироламо Саккери, который использовал его в своей книге «Евклид, очищенный от всех пятен». Саккери в этой работе попытался доказать пятый постулат, используя метод «от противного».
Геометрия инцидентности — раздел классической геометрии, изучающий структуры инцидентности, например принадлежность точки прямой.
Основания геометрии — область математики, изучающая аксиоматические системы евклидовой геометрии, а также различных неевклидовых геометрий. Основные вопросы состоят в полноте, независимости и непротиворечивости аксиоматических систем. Основания геометрии также связаны с вопросом преподавания геометрии.
Аксиоматика Бахмана — система аксиом нейтральной и Евклидовой геометрий, построенная на понятии групп движений. Предложенная Фридрихом Бахманом.
Аксиоматика Тарского — система аксиом элементарной евклидовой геометрии, предложенная Альфредом Тарским. Замечательна тем, что формулируется в логике первого порядка с равенством и не требует теории множеств.