Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Математи́ческий ана́лиз — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Теория чисел или высшая арифметика — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Дифференциа́льное уравне́ние — уравнение, которое помимо функции содержит её производные. Порядок входящих в уравнение производных может быть различен. Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или отсутствовать вовсе, кроме хотя бы одной производной. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным. Например, не является дифференциальным уравнением.
Уравне́ние — равенство вида
- ,
Гео́рг Фри́дрих Бе́рнхард Ри́ман — немецкий математик, механик и физик.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Существует множество математических и физических объектов, названных в честь Леонарда Эйлера, что породило шуточное фольклорное правило: «В математике принято называть открытие именем второго человека, который его сделал — иначе пришлось бы всё называть именем Эйлера».
Трансцендентная функция — аналитическая функция, не являющаяся алгебраической. Простейшими примерами трансцендентных функций служат показательная функция, тригонометрические функции, логарифмическая функция.
Алгебраическая функция — элементарная функция, которая в окрестности каждой точки области определения может быть неявно задана с помощью алгебраического уравнения.
Вы́чет в комплексном анализе — объект, характеризующий локальные свойства заданной функции или формы.
Обыкновенное дифференциальное уравне́ние (ОДУ) — дифференциальное уравнение для функции от одной переменной Таким образом, ОДУ — уравнения вида
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Интегральная теорема Коши — утверждение из теории функций комплексной переменной.
Подвижная особенность общего решения обыкновенного дифференциального уравнения — такая особая точка решения, которая различна для разных частных решений одного уравнения. То есть, говорят, что общее решение дифференциального уравнения имеет подвижную особенность, если различные частные решения этого уравнения имеют особенность в различных точках, в зависимости от параметра, определяющего конкретное частное решение. Особые точки, которые не зависят от конкретного решения, называются неподвижными особенностями. Подвижные особенности имеют важную роль при изучении решений обыкновенных дифференциальных уравнений в комплексной плоскости.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределённый интеграл, определённый интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель не адекватна конкретному описываемому явлению, из существования решения реальной задачи не следует существование соответствующей математической задачи. Доказательство теорем существования необходимо перед решением различных математических задач, вроде вычисления интеграла или интегрирования дифференциального уравнения. Теоремы существования позволяют определить, существует ли вычисляемый интеграл и сколько решений имеет дифференциальное уравнение. Если удаётся доказать теорему существования, единственность решения и корректность самой постановки задачи, то это означает очень важный первый шаг в решении задачи.
Теорема Эрмита — утверждение о свойствах решений дифференциальных уравнений первого порядка, в которые не входит независимая переменная.
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
В математике индекс точки или порядок точки относительно замкнутой кривой на плоскости — это целое число, представляющее число полных оборотов, которое делает кривая вокруг заданной точки против часовой стрелки. Иногда говорят о порядке кривой относительно точки. Индекс зависит от ориентации кривой и принимает отрицательное значение, если обход кривой происходит по часовой стрелке.
Список объектов, названных в честь французского математика XIX века Огюстена Луи Коши.
- Горизонт Коши
- Задача Коши — задача нахождения решения дифференциального уравнения, удовлетворяющего начальным условиям.
- Интеграл Коши — Лагранжа — интеграл уравнений движения идеальной жидкости в случае потенциальных течений.
- Интегральная теорема Коши — интеграл от аналитической функции по замкнутой кривой в односвязной области равен нулю.
- Интегральная формула Коши — соотношение для голоморфных функций комплексного переменного, связывающее значение функции в точке с её значениями на контуре, окружающем точку.
- Интегральный признак Коши — Маклорена — признак сходимости убывающего положительного числового ряда.
- Коши — небольшой ударный кратер на видимой стороне Луны.
- Критерий Коши равномерной сходимости несобственных интегралов.
- Критерий сходимости Коши — критерий сходимости числовых рядов.
- Лемма Коши — Фробениуса — классический результат комбинаторной теории групп, даёт выражение на число орбит в действии группы.
- Матрица Коши
- Матрица Коши — матрица, с помощью которых выражаются решения систем неоднородных дифференциальных уравнений.
- Неравенство Коши — Буняковского — обобщение неравенства треугольника, связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве.
- Неравенство Коши — соотношение среднего арифметического, среднего геометрического, среднего гармонического и среднего квадратического.
- Принцип Коши — Кантора — лемма о вложенных отрезках, доказывающая полноту множества вещественных чисел.
- Радикальный признак Коши — признак сходимости числового ряда.
- Распределение Коши — класс вероятностных распределений.
- Телескопический признак Коши — признак сходимости положительных числовых рядов.
- Тензор деформации Коши-Грина — тензор, который характеризует сжатие (растяжение) и изменение формы в каждой точке тела при деформации.
- Тензор напряжений Коши — тензор, описывающий механические напряжения в произвольной точке нагруженного тела при малых деформациях.
- Теоре́ма Больцано — Коши — если непрерывная функция, определённая на вещественном промежутке, принимает два значения, то она принимает и любое значение между ними.
- Теорема Коши о вычетах — даёт способ вычисления интеграла мероморфной функции по замкнутому контуру.
- Теорема Коши — Адамара о степенном ряде — оценка радиуса сходимости некоторых степенных рядов.
- Теорема Коши — Дэвенпорта в аддитивной комбинаторике: размер множества сумм двух множеств в группе вычетов никогда не оказывается существенно меньше, чем сумма их размеров.
- Теорема Коши — Ковалевской — теорема о существовании и единственности локального решения задачи Коши для дифференциального уравнения в частных производных.
- Теорема Коши о многогранниках — грани многогранника вместе с правилом склейки полностью определяют выпуклый многогранник.
- Теорема Коши о среднем значении — обобщение формулы конечных приращений.
- Теорема Коши — Пеано — теорема о существовании решения обыкновенного дифференциальное уравнения.
- Теорема Коши — Пуанкаре — обобщение на случай многомерного комплексного пространства интегральной теоремы Коши.
- Теорема Коши — если порядок конечной группы делится на простое число , то содержит элементы порядка .
- Уравнение Коши - Эйлера — вид линейного дифференциального уравнения, допускающего простой алгоритм решения.
- Условия Коши — Римана — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного.
- Формула Бине — Коши — теорема об определителе произведения двух матриц, которое является квадратной матрицей
- Фундаментальная последовательность Коши — последовательность точек метрического пространства такая, что для любого ненулевого заданного расстояния существует элемент последовательности, начиная с которого все элементы последовательности находятся друг от друга на расстоянии менее, чем заданное.
- Условие Коши — критерий сходимости фундаментальной последовательности Коши.
- Функциональное уравнение Коши
- Число Коши — критерий подобия в механике сплошных сред.