Эйлерова характеристика или характеристика Эйлера — Пуанкаре — целочисленная характеристика топологического пространства. Эйлерова характеристика пространства обычно обозначается .
Риманово многообразие, или риманово пространство (M, g), — это (вещественное) гладкое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом. Другими словами, риманово многообразие — это дифференцируемое многообразие, в котором касательное пространство в каждой точке является конечномерным евклидовым пространством.
Бордизм, также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных словосочетаний в нескольких родственных смыслах, почти во всех из них вместо бордизм раньше говорили о кобордизмах, старая терминология тоже сохранилась.
Диффеоморфизм — отображение определённого типа между гладкими многообразиями.
А́лгебра Ли — объект общей алгебры, являющийся векторным пространством с определенной на ней антикоммутативной билинейной операцией, удовлетворяющей тождеству Якоби. В общем случае алгебра Ли является неассоциативной алгеброй. Названа по имени норвежского математика Софуса Ли (1842—1899).
Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаётся скалярное произведение векторов в касательном пространстве. Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.
Многообра́зие — локально евклидово пространство.
Теорема о причёсывании ежа утверждает, что на сфере невозможно выбрать касательное направление в каждой точке, которое определено во всех точках сферы и непрерывно зависит от точки. Неформально говоря, невозможно причесать свернувшегося клубком ежа так, чтобы у него не торчала ни одна иголка — отсюда и упоминание ежа в названии теоремы.
Теорема Новикова о компактном слое: Двумерное слоение на трехмерном многообразии с нестягиваемой универсальной накрывающей имеет компактный слой.
Слоение коразмерности 1 — это разбиение многообразия на непересекающиеся подмножества которые локально выглядят как поверхности уровня гладких регулярных функций.
Теорема Сарда — теорема математического анализа с приложениями в дифференциальной геометрии и топологии, теории катастроф и теории динамических систем.
Индекс особой точки векторного поля — математическое понятие, относящееся к дифференциальной топологии, дифференциальной геометрии, теории динамических систем и теории дифференциальных уравнений. Является топологической характеристикой изолированной особой точки векторного поля и определяется как степень гауссова отображения в данной точке.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Класс Тодда — это некоторая конструкция, которая ныне считается частью теории характеристических классов в алгебраической топологии. Класс Тодда векторного расслоения можно определить посредством теории классов Чженя и они встречаются там, где классы Чженя существуют — в первую очередь в дифференциальной топологии, теории комплексных многообразий и алгебраической геометрии. Грубо говоря, класс Тодда действует противоположно классу Чженя и относится к нему как конормальное расслоение относится к нормальному расслоению.