Комбинато́рика — раздел математики, посвящённый решению задач, связанных с выбором и расположением элементов некоторого множества в соответствии с заданными правилами. Каждое такое правило определяет некоторую выборку из элементов исходного множества, которая называется комбинаторной конфигурацией. Простейшими примерами комбинаторных конфигураций являются перестановки, сочетания и размещения.
Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
Теорема Брунна — Минковского — классическая теорема выпуклой геометрии:
Выпуклой оболочкой множества называется наименьшее выпуклое множество, содержащее . «Наименьшее множество» здесь означает наименьший элемент по отношению к вложению множеств, то есть такое выпуклое множество, содержащее данную фигуру, что оно содержится в любом другом выпуклом множестве, содержащем данную фигуру.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Блок-схема — это множество вместе с семейством подмножеств, члены которого удовлетворяют некоторым свойствам, которые считаются полезными для конкретного приложения. Эти приложения приходят из разных областей, включая планирование эксперимента, конечную геометрию, тестирование программного обеспечения, криптографию и алгебраическую геометрию. Рассматривалось много вариантов, но наиболее интенсивно изучались сбалансированные неполные блок-схемы, которые исторически были связаны со статистическими задачами при планировании эксперимента.
Алексе́й Васи́льевич Погоре́лов — советский математик. Специалист в области выпуклой и дифференциальной геометрии, теории дифференциальных уравнений и теории оболочек. Академик АН СССР / РАН. Лауреат Ленинской премии.
Степенной ряд с одной переменной — это формальное алгебраическое выражение вида:
Ви́ктор Андре́евич Топоно́гов — советский и российский геометр, доктор физико-математических наук (1969), профессор кафедры геометрии и топологии физического факультета Новосибирского государственного университета (1972), ученик А. И. Фета.
Кру́чение аффи́нной свя́зности — одна из геометрических характеристик связностей в дифференциальной геометрии. В отличие от понятия кривизны, имеющего смысл для связности в произвольном векторном расслоении или даже связности Эресманна в локально тривиальном расслоении, кручение может быть определено лишь для связностей в касательном расслоении.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Теорема Адамара — Картана — утверждение о том, что универсальное накрытие риманова многообразия с неположительной кривизной диффеоморфно евклидову пространству.
Теорема Громова о компактности или Теорема выбора Громова гласит, что множество римановых многообразий данной размерности с кривизной Риччи ≥ c и диаметром ≤ D является относительно компактным в метрике Громова — Хаусдорфа.
Пространства Адамара — нелинейное обобщение гильбертовых пространств, частный случай пространства Александрова с кривизной ограниченной сверху.
Изометрия — преобразование между метрическими пространствами, сохраняющая расстояния между точками.
Александровская геометрия — своеобразное развитие аксиоматического подхода в современной геометрии. Идея состоит в замене определённого равенства в аксиоматике евклидова пространства на неравенство.
Теорема Решетняка о мажоризации — удобная характеризация CAT(k) пространств.
Метод проксимального градиента — это обобщение проецирования, используемое для решения недифференцируемых задач выпуклого программирования.