
Преобразование Фурье́ — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.

Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины
.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Аналитическая функция вещественной переменной — функция, которая совпадает со своим рядом Тейлора в окрестности любой точки области определения.

Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости
и комплексно дифференцируемая в каждой точке.
Теорема Мореры представляет собой обращение (неполное) интегральной теоремы Коши и является одной из основных теорем теории функций комплексного переменного. Она может быть сформулирована так:
Вы́чет в комплексном анализе — объект, характеризующий локальные свойства заданной функции или формы.
Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.
Интегральная теорема Коши — утверждение из теории функций комплексной переменной.
Интегральная формула Коши — соотношение для голоморфных функций комплексного переменного, связывающее значение функции в точке с её значениями на контуре, окружающем точку.

Принципом аргумента в комплексном анализе называют следующую теорему:
Принцип максимума модуля выражается следующей теоремой:

Основна́я теоре́ма о вы́четах — мощный инструмент для вычисления интеграла мероморфной функции по замкнутому контуру. Её часто используют также для вычисления вещественных интегралов. Она является обобщением интегральной теоремы Коши и интегральной формулы Коши.
Теорема Лагранжа об обращении рядов позволяет явно записать обратную функцию к данной аналитической функции в виде бесконечного ряда. Теорема имеет приложения в комбинаторике.
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
В математике и обработке сигналов преобразование Гильберта — линейный оператор, сопоставляющий каждой функции
функцию
в той же области.
Теорема Коши — Пуанкаре является обобщением на случай многомерного комплексного пространства интегральной теоремы Коши. Была доказана А. Пуанкаре в 1886 г.
Комплексная дифференциальная форма — дифференциальная форма с комплексными коэффициентами, обычно рассматривается на комплексных многообразиях.
Эта страница основана на
статье Википедии.
Текст доступен на условиях лицензии
CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и звуки доступны по их собственным лицензиям.