Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом . Предложены Уильямом Гамильтоном в 1843 году.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Интегра́л Ри́мана — наиболее широко используемый вид определённого интеграла. Очень часто под термином «определённый интеграл» понимается именно интеграл Римана, и он изучается самым первым из всех определённых интегралов во всех курсах математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия. Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные в соответствие дифференциальному уравнению, получаются применением разностного метода, что отличает теорию разностных схем от других численных методов решения дифференциальных задач.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Предел вдоль фильтра — обобщение понятия предела.
Теорема Тейлора даёт приближение к функции, дифференцируемой k раз, вблизи данной точки с помощью многочлена Тейлора k-го порядка. Для аналитических функций многочлен Тейлора в данной точке является частичной суммой их ряда Тейлора, который, в свою очередь, полностью определяет функцию в некоторой окрестности точки. Точное содержание теоремы Тейлора до настоящего времени не согласовано. Конечно, существует несколько версий теоремы, применимых в различных ситуациях, и некоторые из этих версий содержат оценки ошибки, возникающей при приближении функции с помощью многочлена Тейлора.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Теорией Ку́пмана — фон Не́ймана (KvN-теорией) в математической физике называется оригинальная переформулировка классической статистической механики, созданная американскими математиками Джоном фон Нейманом и Бернардом Купманом. Формализм механики Купмана — фон Неймана максимально приближен к формализму нерелятивистской квантовой механики: состояние динамической системы в ней описывается при помощи классической волновой функции, являющейся аналогом квантовомеханической волновой функции, классическое уравнение Лиувилля приобретает математическую структуру уравнения Шрёдингера и т. д.
Группа Лоренца является группой Ли симметрий пространства-времени в специальной теории относительности. Эта группа может быть реализована как набор матриц, линейных преобразований или унитарных операторов на некотором гильбертовом пространстве. Группа имеет различные представления. В любой релятивистски инвариантной физической теории эти представления как-то должны быть отражены. Сама физика должна быть сделана на их основе. Более того, специальная теория относительности вместе с квантовой механикой являются двумя физическими теориями, которые тщательно проверены и объединение этих двух теорий сводится к изучению бесконечномерных унитарных представлений группы Лоренца. Это имеет как историческую важность в основном течении в теоретической физике, так и связи с более спекулятивными теориями настоящего времени.
Унитарность в квантовой физике — условие, что временная эволюция квантового состояния в соответствии с уравнением Шрёдингера математически представлена унитарным оператором. Это обычно принимается как аксиома или основной постулат квантовой механики, в то время как обобщения или отклонения от унитарности являются частью предположений в теориях, которые могут выходить за рамки квантовой механики. Граница унитарности — это любое неравенство, которое следует из унитарности оператора эволюции, то есть из утверждения, что эволюция во времени сохраняет внутренние произведения в гильбертовом пространстве.
Представление группы Ли — это линейное действие группы Ли на векторном пространстве или, что то же самое, гладкий гомоморфизм группы Ли в группу обратимых операторов на векторном пространстве. Играет важную роль в изучении непрерывной симметрии в математике и теоретической физике. Представления групп Ли изучены довольно хорошо, основным инструментом их изучения является использование соответствующих «инфинитезимальных» представлений алгебр Ли.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
Групповой анализ дифференциальных уравнений — раздел математики, изучающий свойства симметрии дифференциальных уравнений относительно различных преобразований зависимых и независимых переменных. Включает в себя методы и прикладные аспекты дифференциальной геометрии, теории групп и алгебр Ли, вариационного исчисления и является, в свою очередь, эффективным инструментом исследования в теории ОДУ, ДУЧП и математической физике.
Тождество Похожаева — это интегральное соотношение, которому удовлетворяют стационарные локализованные решения нелинейного уравнения Шредингера или нелинейного уравнения Клейна-Гордона. Оно было получено С.И. Похожаевым и аналогично теореме о вириале. Это соотношение также известно как теорема Д.Г. Деррика. Аналогичные тождества могут быть получены и для других уравнений математической физики.
Спектральная мера - это отображение, определённое на -алгебре подмножеств заданного множества, значения которого являются ортогональными проекторами в гильбертовом пространстве.
Псевдодифференциальный оператор — расширение концепции дифференциального оператора в математическом анализе. Псевдодифференциальные операторы широко применяются в теории уравнений в частных производных и квантовой теории поля, например, в математических моделях, которые включают ультраметрические псевдодифференциальные уравнения в неархимедовом пространстве.