Теорема Стоуна о группах унитарных операторов в гильбертовом пространстве

Перейти к навигацииПерейти к поиску

Теорема Стоуна о группах унитарных операторов в гильбертовом пространстве — важный результат функционального анализа, утверждающий, что всякая сильно непрерывная однопараметрическая группа унитарных операторов представляется в виде:

,

где  — некоторый самосопряженный оператор, а  — параметр. Верно и обратное: всякому самосопряженному оператору с помощью представления Стоуна можно поставить в соответствие сильно непрерывную однопараметрическую группу унитарных операторов.

Теорема была доказана американским математиком Маршаллом Стоуном в 1930 году и имела большое значение для становления квантовой механики, а также послужила толчком к созданию теории Купмана — фон Неймана.

Сильно непрерывная однопараметрическая группа унитарных операторов обладает следующими свойствами:

.

Важность результата для физики заключается в том, что он гарантирует существование и единственность решений уравнений Шрёдингера и Лиувилля, а также сохранение нормировок волновых функций.

Ссылки

  • Stone, M. H. (1930), "Linear Transformations in Hilbert Space. III. Operational Methods and Group Theory", Proceedings of the National Academy of Sciences of the United States of America, 16 (2), National Academy of Sciences: 172—175, ISSN 0027-8424
  • Stone, M. H. (1932), "On one-parameter unitary groups in Hilbert Space", Annals of Mathematics, 33 (3): 643—648
  • K. Yosida, Functional Analysis, Springer-Verlag, (1968).