Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее значение случайной величины. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения. Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Сепара́бельное пространство — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Фу́нкция — соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого.
Равноме́рная непреры́вность — это свойство функции быть одинаково непрерывной во всех точках области определения. В математическом анализе это понятие вводится для числовых функций, в функциональном анализе оно обобщается на произвольные метрические пространства.
Липшицево отображение — отображение, увеличивающее расстояние между образами точек не более чем в раз, где называется константой Липшица данной функции. Названо в честь Рудольфа Липшица.
Теоре́ма Вейерштра́сса — теорема математического анализа и общей топологии, которая гласит, что функция, непрерывная на компакте, ограничена на нём и достигает своих точных верхней и нижней граней.
Теорема Бо́рсука — У́лама — классическая теорема алгебраической топологии, утверждающая, что всякая непрерывная функция, отображающая -мерную сферу в -мерное евклидово пространство для некоторой пары диаметрально противоположных точек имеет общее значение. Неформально утверждение известно как «теорема о температуре и давлении»: в любой момент времени на поверхности Земли найдутся антиподальные точки с равной температурой и равным давлением; одномерный случай обычно иллюстрируют двумя диаметрально противоположными точками экватора с равной температурой.
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Функциональная отделимость — свойство пары подмножеств топологического пространства.
Теорема Арцела́ — утверждение, которое представляет собой критерий предкомпактности множества в полном метрическом пространстве в том специальном случае, когда рассматриваемое пространство — пространство непрерывных функций на отрезке вещественной прямой. Названа в честь автора, Чезаре Арцела.
Сжимающее отображение — отображение метрического пространства в себя, уменьшающее расстояние между любыми точками в некотором сильном смысле.
Теорема Киршбрауна о продолжении — теорема о существовании продолжения липшицевой функции определённой на подмножестве евклидова пространства на всё пространство.
Теорема об инвариантности области утверждает, что образ непрерывного инъективного отображения Евклидова пространства в себя открыт.
Концентрация меры — принцип, согласно которому при определённых достаточно общих и не слишком обременительных ограничениях значение функции большого числа переменных почти постоянно. Например, большинство пар точек на единичной сфере большой размерности находятся на расстоянии, близком к друг от друга.
Метрический дифференциал — обобщение понятия производной на (липшицевы) отображения из евклидова пространства в произвольное метрическое пространство. Впервые рассмотрен Берндом Киркхаймом.