Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Тунне́льный эффект, туннели́рование — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное в классической механике и даже полностью противоречащее ей. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Одномерное стационарное уравнение Шрёдингера — линейное обыкновенное дифференциальное уравнение второго порядка вида
Уровни Ландау — энергетические уровни заряженной частицы в магнитном поле. Впервые получены как решение уравнения Шрёдингера для электрона в магнитном поле Л. Д. Ландау в 1930 году. Решением этой задачи являются собственные значения и собственные функции гамильтониана квантового гармонического осциллятора. Уровни Ландау играют существенную роль в кинетических и термодинамических явлениях в присутствии сильного магнитного поля.
Квазикласси́ческое приближе́ние, также известное как метод ВКБ — пример квазиклассического вычисления в квантовой механике, в котором волновая функция представлена как показательная функция, квазиклассически расширенная, а затем или амплитуда, или фаза медленно изменяются. Метод назван в честь физиков Г. Вентцеля, Х. А. Крамерса и Л. Бриллюэна, которые развили его в 1926 году независимо друг от друга.
В квантовой механике ток вероятности описывает изменение функции плотности вероятности.
Ква́нтовый гармони́ческий осцилля́тор — физическая модель в квантовой механике, представляющая собой параболическую потенциальную яму для частицы массой и являющаяся аналогом простого гармонического осциллятора. При анализе поведения данной системы рассматриваются не силы, действующие на частицу, а гамильтониан, то есть полная энергия осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.
Фоковское состояние — это квантовомеханическое состояние с точно определённым количеством частиц. Названо в честь советского физика В. А. Фока.
Треуго́льная ква́нтовая я́ма — одномерная потенциальная яма, ограниченная с одной стороны бесконечно высокой потенциальной стенкой, а с другой — потенциалом, линейно растущим с увеличением координаты. Один из простых профилей потенциала в квантовой механике, допускающих точное решение задачи о нахождении уровней энергии и волновых функций находящейся в яме частицы. Модель треугольной ямы используется, в частности, при исследованиях систем с двумерным электронным газом.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем, В. Гейзенбергом, Э. Шрёдингером, Н. Бором. Завершил создание математических основ квантовой механики и придал им современную форму П. А. М. Дирак. Отличительным признаком математических уравнений квантовой механики является наличие в них символа постоянной Планка.
Представление Гейзенберга — один из способов описания квантовомеханических явлений, в котором эволюция системы описывается уравнением Гейзенберга и определяется только развитием операторов во времени, причём вектор состояния от времени не зависит.
Поворот Вика — метод решения задач в пространстве Минковского посредством решения связанной задачи в евклидовом пространстве, используя комплексный анализ, в частности, понятие аналитического продолжения. Назван в честь Джанкарло Вика.
Физические свойства графена проистекают из электронных свойств атомов углерода и поэтому часто имеют нечто общее с остальными аллотропными модификациями углерода, которые были известны до него, такими как графит, алмаз, углеродные нанотрубки. Конечно, схожести больше с графитом, так как он состоит из графеновых слоёв, но без новых уникальных физических явлений и исследований других материалов и наработок физических методов анализа и теоретических подходов графен не привлёк бы специалистов из таких разных дисциплин как физика, химия, биология и физика элементарных частиц.
Температурные функции Грина являются некоторой модификацией функций Грина для квантовомеханических систем с температурой отличной от нуля. Они удобны для вычисления термодинамических свойств системы, а также содержат информацию о спектре квазичастиц и о слабонеравновесных кинетических явлениях.
Оператор эволюции — оператор в квантовой механике, заданный на гильбертовом пространстве, который переводит состояние системы из начального момента времени в любой другой.
Концептуальные программы в физике — принятые в физике наиболее общие математические модели. Различные области физики имеют различные программы для моделирования состояний физических систем.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.