Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.
Теоре́ма Паска́ля — классическая теорема проективной геометрии.
Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону . В зависимости от типа треугольника высота может содержаться внутри треугольника, совпадать с его стороной или проходить вне треугольника у тупоугольного треугольника.
Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой . В зависимости от вида треугольника ортоцентр может находиться внутри треугольника, вне его или совпадать с вершиной. Ортоцентр относится к замечательным точкам треугольника и перечислен в энциклопедии центров треугольника Кларка Кимберлинга как точка X(4).
Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка пересечения серединных перпендикуляров к сторонам многоугольника.
Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника. Центр вписанной в треугольник окружности также иногда называют инцентром.
Правильный треугольник — треугольник, все стороны которого равны между собой, как следствие, все углы также равны и составляют 60°; дважды равнобедренный треугольник; правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Символ Шлефли — .
То́чка Лемуа́на — одна из замечательных точек треугольника.
Теоре́ма Помпею́ — теорема планиметрии, открытая румынским математиком Димитрие Помпею и опубликованная им в 1936 году. Теорема известна в двух формулировках: частной и более общей.
Прямая Ньютона — прямая, соединяющая середины диагоналей четырёхугольника.
Треуго́льник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью.
Точка Ферма — точка плоскости, сумма расстояний от которой до вершин треугольника является минимальной. Точку Ферма также иногда называют точкой Торричелли или точкой Ферма-Торричелли. Точка Ферма даёт решение проблемы Штейнера для вершин треугольника. В английской литературе точку Ферма также называют изогональным центром X(13).
Полупериметр многоугольника — это половина его периметра. Хотя полупериметр является очень простой производной периметра, он столь часто появляется в формулах для треугольников и других геометрических фигур, что ему выделили отдельное наименование. Если полупериметр оказывается в какой-либо формуле, его, обычно, обозначают буквой p.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Гиперболический треугольник — треугольником на гиперболической плоскости. Он состоит из трёх отрезков, называемых сторонами или рёбрами, и трёх точек, называемых углами или вершинами.
Вписанно-описанный четырёхугольник — это выпуклый четырёхугольник, который имеет как вписанную окружность, так и описанную окружность. Из определения следует, что вписанно-описанные четырёхугольники имеют все свойства как описанных четырёхугольников, так и вписанных четырёхугольников. Другие названия этих четырёхугольников: хордо-касающийся четырёхугольник и бицентрический четырёхугольник. Их также называют двух-окружностными четырёхугольниками.