Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимно-обратный характер дифференцирования и интегрирования. Создание дифференциального исчисления открыло новую эпоху в развитии математики, положив начало теории рядов, теории дифференциальных уравнений и многому другому. Методы математического анализа нашли применение во всех разделах математики и расширили применение математики в естественных науках и технике.
Преде́лом фу́нкции в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Ле́мма Фату́ — техническое утверждение, используемое при доказательстве различных теорем в функциональном анализе и теории вероятностей. Оно даёт одно из условий, при которых предел почти всюду сходящейся функциональной последовательности будет суммируемым.
Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.
Преобразова́ние Лапла́са (ℒ) — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
В теории информации теорема Шеннона об источнике шифрования устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона.
Признак сравнения — утверждение об одновременности расходимости или сходимости двух рядов, основанный на сравнении членов этих рядов.
Свёртка Дирихле — бинарная операция, определённая для арифметических функций, используемая в теории чисел, введена и исследована немецким математиком Дирихле.
Фу́нкция дели́телей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем фу́нкция диви́зоров. Применяется, в частности, при исследовании связи дзета-функции Римана и рядов Эйзенштейна для модулярных форм. Изучалась Рамануджаном, который вывел ряд важных равенств в модульной арифметике и арифметических тождествах.
Молекулярные орбитали — математическая функция, описывающая волновое поведение электронов в молекуле.
Криптосистема Миччанчо — криптосистема, основанная на схеме шифрования GGH, была предложена в 2001 году профессором Университета Калифорнии в Сан-Диего Даниелем Миччанчо.
Почти периодическая функция — это функция на множестве вещественных чисел, которая периодична с любой желаемой точностью, если заданы достаточно большие равномерно распределённые «почти периоды». Концепцию первым изучал Харальд Бор и её впоследствии обобщили, среди прочих, Вячеслав Васильевич Степанов, Герман Вейль и Абрам Самойлович Безикович. Есть также понятие почти периодических функций на локально компактных абелевых группах, которое первым изучал Джон фон Нейман.