Теоре́ма Паска́ля — классическая теорема проективной геометрии.
Кони́ческое сече́ние, или ко́ника, — пересечение плоскости с поверхностью прямого кругового конуса. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Кроме того, параболу можно рассматривать как предельный случай эллипса, один из фокусов которого бесконечно удалён.
Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре.
Проекти́вная пло́скость — двумерное проективное пространство. Важным частным случаем является вещественная проективная плоскость.
Проективное преобразование проективной плоскости — это преобразование, переводящее прямые в прямые.
Трансфинитная индукция — метод доказательства, обобщающий математическую индукцию на случай несчётного числа значений параметра.
Проективная геометрия — раздел геометрии, изучающий проективные плоскости и пространства. Главная особенность проективной геометрии состоит в принципе двойственности, который прибавляет изящную симметрию во многие конструкции.
Важное свойство проективной плоскости — «симметрия» ролей, которые играют точки и прямые в определениях и теоремах, и двойственность является формализацией этой концепции. Имеются два подхода к концепции двойственности: один, использующий язык «принципа двойственности», позволяет объявить ряд теорем двойственными друг к другу, при этом двойственная к верной теореме тоже верна; и другой, функциональный подход, основанный на специальном отображении двойственности. Связь между подходами состоит в том, что двойственная теорема получается применением отображения двойственности к каждому объекту исходной. Возможен и координатный подход.
Теорема Сильвестра — классический результат комбинаторной геометрии о конфигурациях прямых на плоскости.
Пал Э́рдёш — венгерский математик, один из наиболее продуктивных математиков XX века. Работал в самых разных областях современной математики: комбинаторика, теория графов, теория чисел, математический анализ, теория приближений, теория множеств и теория вероятностей. Лауреат множества математических наград, включая премию Вольфа (1983/1984). Основатель премии Эрдёша.
Конечная геометрия — геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неограниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует вещественных чисел. Конечная геометрия может иметь любое конечное число измерений.
В данном списке приводятся математические утверждения и объекты, названные именем венгерского математика Пала Эрдёша.
Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или на этих структурах. Проблемы комбинаторной геометрии простираются от конкретных «предметно»-комбинаторных вопросов — замощения, упаковка кругов на плоскости, формула Пика — до вопросов общих и глубоких, таких как гипотеза Борсука, проблема Нелсона — Эрдёша — Хадвигера.
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
В проективной геометрии конфигурация на плоскости состоит из конечного множества точек и конечной конфигурации прямых, таких, что каждая точка инцидентна одному и тому же числу прямых и каждая прямая инцидентна одному и тому же числу точек.
Геометрия инцидентности — раздел классической геометрии, изучающий структуры инцидентности, например принадлежность точки прямой.
О теореме Бека в теории категорий (однофамилец) см. статью Теорема Бека о монадизируемости
Теорема Безу — утверждение в алгебраической геометрии, описывающее число общих точек, или точек пересечения, двух плоских алгебраических кривых, не имеющих общей компоненты. Теорема утверждает, что число общих точек таких кривых не превосходит произведения их степеней, и имеет место равенство, если учитывать бесконечно удалённые точки и точки с комплексными координатами, и если точки считаются с кратностями, равными индексам пересечения.
Вещественная проективная плоскость является примером компактного неориентированного двумерного многообразия, другими словами, односторонней поверхности. Проективную плоскость невозможно вложить в обычное трёхмерное пространство без самопересечения. Основная область применения этой плоскости — геометрия, поскольку основное построение вещественной проективной плоскости — пространство прямых в R3, проходящих через начало координат.