Теоре́мой Ха́на — Ба́наха называют несколько связанных между собой классических результатов функционального анализа, в частности
- Теорему о продолжении линейного функционала с сохранением мажоранты;
- Теорему о разделении выпуклых множеств;
- Теорему о непрерывном или положительном продолжении линейного функционала.
Це́лые чи́сла — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение.
Веще́ственное число́ — математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций.
Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году.
Тригономе́трия — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии для вычисления одних элементов треугольника по данным о других его элементах.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями математики.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости. В теорию характеристических функций внесли большой вклад Ю. В. Линник, И. В. Островский, К. Р. Рао, Б. Рамачандран.
Оптимизация — задача нахождения экстремума целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств или неравенств.
Важное свойство проективной плоскости — «симметрия» ролей, которые играют точки и прямые в определениях и теоремах, и двойственность является формализацией этой концепции. Имеются два подхода к концепции двойственности: один, использующий язык «принципа двойственности», позволяет объявить ряд теорем двойственными друг к другу, при этом двойственная к верной теореме тоже верна; и другой, функциональный подход, основанный на специальном отображении двойственности. Связь между подходами состоит в том, что двойственная теорема получается применением отображения двойственности к каждому объекту исходной. Возможен и координатный подход.
Промежуток, или, если более точно, промежуток числовой прямой, — это множество вещественных чисел — таких, что если некоторые два числа принадлежат этому множеству, то любое число, лежащее между ними, тоже принадлежит этому множеству. С использованием логических символов это определение можно записать так:
- множество является промежутком, только если
Основа́ния матема́тики — система общих для всей математики понятий, концепций и методов, с помощью которых строятся различные её разделы.
Теория Рамсея — раздел комбинаторики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Лемма Шепли — Фолкмана связывает две операции выпуклой геометрии — сложение по Минковскому и выпуклую оболочку. Лемма имеет приложения в ряде дисциплин, в том числе в математической экономике, оптимизации и теории вероятностей. Лемма и связанные с ней результаты позволяют дать утвердительный ответ на вопрос «Близка ли к состоянию выпуклости сумма нескольких множеств?».
K-теория — математическая теория, изучающая кольца, порождённые векторными расслоениями над топологическими пространствами или схемами. В алгебраической топологии эта обобщённая теория когомологий называется топологической K-теорией. В алгебре и алгебраической геометрии соответствующий раздел называется алгебраической K-теорией. Также она играет важную роль в операторных алгебрах и её можно рассматривать как теорию определенных видов инвариантов больших матриц.