Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
Тополо́гия Зари́сского, или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры для решения задач, возникающих в геометрии.
Степенью многочлена одной комплексной переменной называется количество всех его корней с учётом их кратности. Из основной теоремы алгебры и из следствия теоремы Безу следует, что любой многочлен p(x) степени n возможно представить в виде a(x − x1)…(x − xn), где x1, …, xn — это все комплексные корни многочлена с учётом кратности, а константа a ≠ 0 — старший коэффициент многочлена. Раскрыв скобки в выражении a(x − x1)…(x − xn), можно получить эквивалентное определение: степень многочлена одной переменной — это максимальная из степеней всех его слагаемых-одночленов, тождественно не равных нулю.
Алгебраическая кривая, или плоская алгебраическая кривая, — это геометрическое место (множество) точек на плоскости (O;x,y), которое определяется как множество нулей многочлена от двух переменных. Степенью (или порядком) n этой кривой называется степень этого многочлена. Алгебраические кривые степеней n = 1, 2, 3, …, 8 кратко называются прямыми, кониками, кубиками, квартиками, пентиками, секстиками, септиками, октиками соответственно. Например, единичная окружность — это алгебраическая кривая степени 2 (коника), так как она задаётся уравнением x2 + y2 − 1 = 0.
Теоре́ма Ги́льберта о нуля́х — теорема, устанавливающая фундаментальную взаимосвязь между геометрией и алгеброй. Использование этой взаимосвязи является основой алгебраической геометрии.
Алгоритм Берлекэмпа — алгоритм, предназначенный для факторизации унитарных многочленов над конечным полем. Разработан Элвином Берлекэмпом в 1967 году. Может использоваться также для проверки неприводимости многочленов над конечными полями. Основная идея алгоритма заключается в возможности представления исходного многочлена в виде произведения наибольших общих делителей самого многочлена и некоторых многочленов, которые с точностью до свободного члена являются -разлагающими.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Теорема Хассе об эллиптических кривых, также называемая границей Хассе, даёт оценку числа точек на эллиптической кривой над конечным полем, причём ограничивает значения как сверху, так и снизу. Теорема Хассе эквивалентна определению абсолютного значения корней локальной дзета-функции Е. В этом виде её можно рассматривать как аналог гипотезы Римана для поля функций, ассоциированного с эллиптической кривой.
Рациональная нормальная кривая — гладкая рациональная кривая степени n в n-мерном проективном пространстве Она является одним из сравнительно простых проективных многообразий, более формально, она является образом вложения Веронезе, применённого к проективной прямой.
Симметрическая функция от n переменных — это функция, значение которой на любом n-кортеже аргументов то же самое, что и значение на любой перестановке этого n-кортежа. Если, например, , функция может быть симметрической на всех переменных или парах , или . Хотя это может относиться к любым функциям, для которых n аргументов имеют одну и ту же область определения, чаще всего имеются в виду многочлены, которые в этом случае являются симметрическими многочленами. Вне многочленов теория симметрических функций бедна и мало используется. Также обычно не важно точное число переменных, считается что их просто достаточно много. Чтобы сделать эту идею более строгой, с помощью проективного предела осуществляется переход к так называемому кольцу симметрических функций , формально содержащему бесконечное число переменных.
Proj — конструкция, аналогичная конструкции аффинных схем как спектров колец, с помощью которой строятся схемы, обладающие свойствами проективных пространств и проективных многообразий.
Теорема Безу — утверждение в алгебраической геометрии, описывающее число общих точек, или точек пересечения, двух плоских алгебраических кривых, не имеющих общей компоненты. Теорема утверждает, что число общих точек таких кривых не превосходит произведения их степеней, и имеет место равенство, если учитывать бесконечно удалённые точки и точки с комплексными координатами, и если точки считаются с кратностями, равными индексам пересечения.
Функция Гильберта, ряд Гильберта и многочлен Гильберта градуированной коммутативной алгебры, конечно порождённой над полем — это три тесно связанных понятия, которые позволяют измерить рост размерности однородных компонент алгебры.
Теорема Римана — Роха связывает комплексный анализ связных компактных римановых поверхностей с чисто топологическим родом поверхности g, используя методы, которые могут быть распространены на чисто алгебраические ситуации.
Теорема Мэйсона — Стотерса — аналог abc-гипотезы для многочленов. Названа в честь Стотерса, который опубликовал её в 1981 году, и Мейсона, который вновь открыл её после этого.
Ле́мма Га́усса — утверждение про свойства многочленов над факториальными кольцами, которое впервые было доказано для многочленов над кольцом целых чисел. Широко применяется в теории колец и полей, в частности, при доказательстве факториальности кольца многочленов над факториальным кольцом и теоремы Люрота.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.