Класси́ческая меха́ника — вид механики, основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «нью́тоновой меха́никой».
Гидродина́мика — раздел физики сплошных сред и гидроаэродинамики, изучающий движение идеальных и реальных жидкостей и газа, и их силовое взаимодействие с твёрдыми телами. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.
Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики, как теоретическая механика, гидродинамика и теория упругости. Редакционная коллегия журнала Journal of Mathematical Physics определяет математическую физику как «применение математики к физическим задачам и разработка математических методов, подходящих для таких приложений и для формулировок физических теорий».
Математи́ческий ана́лиз — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Аку́стика (от греч. ἀκούω (аку́о) — слышу) — в узком смысле слова — учение о звуке, то есть о волнах плотности в газах, жидкостях и в твёрдых телах, слышимых человеческим ухом (диапазон от 16 Гц до 20 кГц), а в широком смысле — область физики, изучающая свойства упругих колебаний и волн от низких частот (условно от 0 Гц) до предельно высоких частот 1012—1013 Гц, их взаимодействия с веществом и применение полученных знаний для решения широкого круга инженерных проблем. Термином «акустика» сейчас также часто характеризуют систему звуковоспроизводящей аппаратуры.
Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Термин был введён в 1906 году Максом Планком с целью подчеркнуть роль принципа относительности в специальной теории относительности. Иногда используется как эквивалент понятия «релятивистская физика».
Комбинато́рика — раздел математики, посвящённый решению задач, связанных с выбором и расположением элементов некоторого множества в соответствии с заданными правилами. Каждое такое правило определяет некоторую выборку из элементов исходного множества, которая называется комбинаторной конфигурацией. Простейшими примерами комбинаторных конфигураций являются перестановки, сочетания и размещения.
Леона́рд Э́йлер — швейцарский, прусский и российский математик и механик, внёсший фундаментальный вклад в развитие этих наук. Наряду с Лагранжем — крупнейший математик XVIII века, считается одним из величайших математиков в истории. Эйлер — автор более чем 850 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и другим областям. Он изучал медицину, химию, ботанику, воздухоплавание, множество европейских и древних языков. Академик Петербургской, Берлинской, Туринской, Лиссабонской и Базельской академий наук, иностранный член Парижской академии наук. Первый российский член Американской академии искусств и наук.
Сопротивление материалов — наука о прочности и надёжности деталей машин и конструкций. В её задачи входит обобщение инженерного опыта создания машин и сооружений, разработка научных основ проектирования и конструирования надёжных изделий, совершенствование методов оценки прочности. Является частью механики деформируемого твёрдого тела, которая рассматривает методы инженерных расчётов конструкций на прочность, жесткость и устойчивость при одновременном удовлетворении требований надежности, экономичности и долговечности.
Данная статья представляет собой обзор основных событий и тенденций в истории математики с древнейших времён до наших дней.
Существует множество математических и физических объектов, названных в честь Леонарда Эйлера, что породило шуточное фольклорное правило: «В математике принято называть открытие именем второго человека, который его сделал — иначе пришлось бы всё называть именем Эйлера».
Дании́л Берну́лли — швейцарский физик, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Сын Иоганна Бернулли.
Спор о струне, спор о колеблющейся струне, спор о звучащей струне — научная дискуссия, развернувшаяся в XVIII веке между крупнейшими учёными того времени вокруг изучения колебаний струны. В спор оказались вовлечены Д’Аламбер, Эйлер, Д. Бернулли, Лагранж. Дискуссия касалась определения понятия функции и оказала решающее влияние на множество разделов математики: теорию дифференциальных уравнений в частных производных, математический анализ и теорию функций вещественной переменной, теорию тригонометрических рядов Фурье и теорию обобщённых функций и пространств Соболева.
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
Строи́тельная меха́ника — совокупность наук о прочности, жёсткости и устойчивости строительных конструкций.
Числова́я фу́нкция — функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество). Числовые множества — это множества натуральных, целых, рациональных, вещественных и комплексных чисел вместе с определёнными для соответствующих множеств алгебраическими операциями. Для всех перечисленных числовых множеств, кроме комплексных чисел, определено также отношение линейного порядка, позволяющее сравнивать числа по величине. Числовые пространства — это числовые множества вместе с функцией расстояния, заданной на соответствующем множестве.
История теории вероятностей отмечена многими уникальными особенностями. Прежде всего, в отличие от появившихся примерно в то же время других разделов математики, у теории вероятностей по существу не было античных или средневековых предшественников, она целиком — создание Нового времени. Долгое время теория вероятностей считалась чисто опытной наукой и «не совсем математикой», её строгое обоснование было разработано только в 1929 году, то есть даже позже, чем аксиоматика теории множеств (1922). В наши дни теория вероятностей занимает одно из первых мест в прикладных науках по широте своей области применения; «нет почти ни одной естественной науки, в которой так или иначе не применялись бы вероятностные методы».
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
Теория изгиба балок Тимошенко была развита Степаном Прокофьевичем Тимошенко в начале XX века. Модель учитывает сдвиговую деформацию и вращательные изгибы, что делает её применимой для описания поведения толстых балок, сэндвич-панелей и высокочастотных колебаний балок, когда длина волны этих колебаний становится сравнимой с толщиной балки. В отличие от модели изгиба балок Эйлера-Бернулли модель Тимошенко приводит к уравнению четвертого порядка, которое также содержит и частные производные второго порядка. Физически учёт механизмов деформации эффективно снижает жёсткость балки и приводит к большему отклонению при статической нагрузке и к предсказанию меньших собственных частот для заданного набора граничных условий. Последнее следствие наиболее заметно для высоких частот, поскольку длина волны колебаний становится короче и расстояние между противоположно направленными сдвиговыми силами уменьшается.