Наиболее распространённый вид тета-функций — это функции, встречающиеся в теории эллиптических функций. По отношению к одной из комплексных переменных (обычно обозначаемой z) тета-функция имеет свойство, выражающееся в сложении периодов ассоциированных эллиптических функций, что делает их квазипериодическими[англ.]. В абстрактной теории это получается из условия линейного расслоения[англ.]понижения[англ.].
Имеется несколько связанных функций, которые называются тета-функциями Якоби, и много различных и несовместимых систем их обозначения. Одна тета-функция Якоби (названа именем Карла Густава Якоби), это функция, определённая от 2 комплексных переменных z и , где z может быть любым комплексным числом, а ограничена верхней половиной плоскости, что означает, что число имеет положительную мнимую часть. Функция задаётся формулой
где и . Функция является формой Якоби[англ.]. Если фиксировать , функция становится рядом Фурье для периодической целой функции от z с периодом 1. В этом случае тета-функция удовлетворяет тождеству
Функция ведёт себя очень регулярно с учётом квазипериода и удовлетворяет функциональному уравнению
где a и b — целые числа.
Вспомогательные функции
Тета-функция Якоби, определённая выше, иногда рассматривается вместе с тремя дополнительными тета-функциями и в этом случае записывается с дополнительным индексом 0:
Дополнительные (полупериодичные) функции определяются формулами
Этим обозначениям следовали Риман и Мамфорд. Первоначальная формулировка Якоби была в терминах нома[англ.], а не . В обозначениях Якоби θ-функции записываются в виде:
Приведённые выше определения тета-функции Якоби далеко не единственные. См. статью Тета-функции Якоби (вариации обозначений)[англ.] с дальнейшим обсуждением.
Если мы положим в тета-функциях выше, мы получим четыре функции, зависящие только от и определённые на верхней полуплоскости (которые иногда называются тета-константами.) Они могут быть использованы для определения различных модулярных форм и для параметризации некоторых кривых.
Тождества основная
Так называемые функции «тета-нульверт» (Theta-Nullwert) имеют следующее представление суммы и следующее представление произведения:
Тета-функция удовлетворяет следующему основному соотношению с «номеном q»:
Следующие 2 формулы определяют полный эллиптический интеграл 1-го типа и согласуются друг с другом:
Тождества Якоби
В частности Тождества Якоби определяется следующей формулой:
Эта формула представляет собой кривой Ферма 4 степени.
Тождества Якоби также возникает как комбинация 3 квадратичных соотношений:
Объединение этих 3 формул даёт следующую формулу:
Тождества Якоби описывают, как тета-функции преобразуются модулярной группой, которая порождается отображениями и . Тождества для первого преобразования найти легко, поскольку добавление единицы в показателе к имеет тот же эффект, что и добавление к z (mod 2). Во 2 случае положим
Тогда
Тета-функции в терминах нома
Вместо выражения тета-функций в терминах z и мы можем выразить их в терминах аргумента w и нома[англ.]q, где , а . В этом случае функции превращаются в
Мы видим, что тета-функции можно определить в терминах w и q без прямой ссылки на экспоненциальную функцию. Формулы могут быть использованы, поэтому, для определения тета-функций над другими полями, где экспоненциальная функция может быть не везде определена, такими как поле p-адических чисел.
Представления произведений
Тройное произведение Якоби (специальный случай тождеств Макдональда[англ.]) говорит нам, что для комплексных чисел w и q с и мы имеем
Это можно доказать элементарными средствами, как, например, в книге Харди и Райта An Introduction to the Theory of Numbers[англ.].
Если мы выразим тета-функцию в терминах томов и , то
Мы поэтому получаем формулу произведения для тета-функции вида
В терминах w и q:
где является q-символом Похгаммера, а является q-тета-функцией[англ.]. Если раскрыть скобки, тройное произведение Якоби получит вид
что можно также переписать в виде
Эта формула верна для общего случая, но представляет особый интерес при вещественных z. Аналогичные формулы произведений для дополнительных тета-функций
Интегральные представления
Тета-функции Якоби имеют следующие интегральные представления:
В следующей таблице приведены лемнискатические значения функций ϑ₁₀(x) и ϑ₀₀(x):
x
ϑ₁₀(x)
ϑ₀₀(x)
Дополнительные значения для ϑ₀₀(x):
И с греческой буквой показано Золотое сечение. Символом обозначена постоянная Гаусса, которая представляет собой отношение лемнискатической константы к числу π. Только что показанные значения были исследованы южнокорейским математиком Джинхи Йи из Пусанского национального университета (부산 대학교). Их результаты впоследствии были опубликованы в Журнале математического анализа и приложений. Кроме того, применяются следующие значения:
Эти 2 значения можно определить непосредственно с помощью формулы суммы Пуассона:
Эквиангармонические значения
Функция ϑ₀₀ имеет следующие эквиангармонические значения функции:
Некоторые эквиангармонические значения тета-функции были исследованы, в частности, математиками Брюсом Карлом Берндтом и Орсом Ребаком.
Значения тета над факториалами восьмых
Значения функции вида ϑ₀₁:
Некоторые тождества с рядами
Следующие 2 тождества для рядов были доказаны Иштваном Мезо[3]:
Эти отношения выполняются для всех 0 < q < 1. Фиксируя значения q, мы получим следующие свободные от параметров суммы
Нули тета-функций Якоби
Все нули тета-функций Якоби являются простыми нулями и задаются следующим образом:
и можно показать, что преобразование инвариантно относительно замены s на 1 − s. Cоответствующий интеграл для z ≠ 0 дан в статье о дзета-функции Гурвица.
Связь с эллиптической функцией Вейерштрасса
Тета-функции использовал Якоби для построения (в виде, приспособленном для упрощения вычислений) его эллиптических функций как частные вышеприведённых 4 тета-функций, и он мог их использовать также для построения эллиптических функций Вейерштрасса, поскольку
,
где вторая производная берётся по z, а константа c определена так, что ряд Лорана функции ℘(z) в точке z = 0 имеет нулевой постоянный член.
Связь с q-гамма функцией
Четвёртая тета-функция – а тогда и остальные – неразрывно связана с q-гамма-функцией Джексона[англ.] соотношением[4].
Связь с эта-функцией Дедекинда
Пусть — эта-функция Дедекинда[англ.], а аргумент тета-функции представлен как ном[англ.]. Тогда
и
См. также статью о модулярных функциях Вебера.
Эллиптический модуль
J-инвариант равен
,
дополнительный эллиптический модуль равен
Решение теплового уравнения
Тета-функция Якоби является фундаментальным решением одномерного уравнения теплопроводности с пространственными периодическими граничными условиями[5]. Принимая вещественным, а с вещественным и положительным t, мы можем записать
Общие решения для задачи с пространственными периодическими начальными значениями для уравнения теплопроводности могут быть получены путём свёртки начальных данных в с тета-функцией.
Связь с группой Гейзенберга
Тета-функция Якоби является инвариантом при действии дискретной подгруппы группы Гейзенберга. Эта инвариантность представлена в статье о тета-представлении[англ.] группы Гейзенберга.
Обобщения
Если F является квадратичной формой от n переменных, то тета-функция, связанная с F, равна
с суммой по решётке целых чисел ℤn. Эта тета-функция является модулярной формой с весом (на надлежащим образом определённой подгруппе) модулярной группы. В разложении в ряд Фурье
Тогда, если дано , тета-функция Римана определяется как
Здесь является n-мерным комплексным вектором, а верхний индекс T означает транспонирование. Тета-функция Якоби является тогда частным случаем с и , где является верхней полуплоскостью.
Тета-функция Римана сходится абсолютно и равномерно на компактных подмножествах .
Функциональное уравнение функции
которое выполняется для всех векторов и для всех }} и .
Согласно Теореме Абеля-Руффини общее уравнение 5 степени не может быть решено в элементарной радикальной форме. Но общее решение вполне возможно с помощью эллиптических функций. С тета-функцией общий случай Уравнения 5 степени также может быть решен как функция эллиптического «номена q» из эллиптического модуля, который всегда «элементарен» в зависимости от коэффициентов. Для следующего уравнения пятой степени в форме Бринга-Джеррарда общее решение может быть представлено в упрощенной форме тета-функцией ϑ₀₀:
Для всех реальных значений имеет показанную сумму функции пятой степени и идентичную функцию отображения для в зависимости от точно реальное решение. И это фактическое решение может для всех действительных значений может быть вызвано точно по следующему алгоритму:
Método de resolución de las ecuaciones quínticas a través de la función theta
Уравнение Бринга – Джеррарда:
Значение эллиптической функции «Номен q»:
Актуальное решение для :
3 примера расчёта
Ниже в качестве примеров рассматриваются 3 уравнения, которые можно решить с помощью тета-функции Якоби, но вообще нельзя решить с помощью элементарных корневых выражений:
Тот же образец процедуры применяется в следующем уравнении:
Milton Abramowitz, Irene A. Stegun.sec. 16.27ff. // Handbook of Mathematical Functions. — New York: Dover Publications, 1964. — ISBN 0-486-61272-4.
Ахиезер Н. И. Элементы теории эллиптических функций. — Москва: «Наука» Главная редакция физико-математической литературы, 1970. — (Физико-математическая библиотека инженера). — ISBN 0-8218-4532-2.
Hershel M. Farkas, Irwin Kra.ch. 6 // Riemann Surfaces. — New York: Springer-Verlag, 1980. — ISBN 0-387-90465-4.. (обсуждение тета-функции Римана)
Hardy G. H., Wright E. M. An Introduction to the Theory of Numbers. — 4th. — Oxford: Clarendon Press, 1959.
James Pierpont. Functions of a Complex Variable. — New York: Dover Publications, 1959.
Harry E. Rauch, Hershel M. Farkas. Theta Functions with Applications to Riemann Surfaces. — Baltimore: Williams & Wilkins, 1974. — ISBN 0-683-07196-3.
William P. Reinhardt, Peter L. Walker.Theta Functions // NIST Handbook of Mathematical Functions / Frank W. L. Oliver, Daniel M. Lozier, Ronald F. Boisvert, Charles W. Clark. — Cambridge University Press, 2010. — ISBN 978-0521192255,.
Whittaker E. T., Watson G. N.ch. 21 // A Course in Modern Analysis. — 4th. — Cambridge: Cambridge University Press, 1927.(история θ-функций Якоби)
Jinhee Yi. Theta-function identities and the explicit formulas for theta-function and their applications // Journal of Mathematical Analysis and Applications. — 2004. — Т. 292. — С. 381–400. — doi:10.1016/j.jmaa.2003.12.009.
István Mező. A q-Raabe formula and an integral of the fourth Jacobi theta function // Journal of Number Theory. — 2012. — Т. 133, вып. 2. — С. 692–704. — doi:10.1016/j.jnt.2012.08.025.
István Mező. Duplication formulae involving Jacobi theta functions and Gosper's q-trigonometric functions // Proceedings of the American Mathematical Society. — 2013. — Т. 141, вып. 7. — С. 2401–2410. — doi:10.1090/s0002-9939-2013-11576-5.
Литература для дальнейшего чтения
Тета-функции, Якоби эллиптические функции // Математическая энциклопедия / Виноградов И. В.. — Советская энциклопедия, 1985. — Т. 5. — (Энциклопедии, словари, справочники).
Прасолов В. В., Соловьёв Ю. П. Алгебраические уравнения и тета-функции. — М.: МК НМУ, 1994.
Hershel M. Farkas.Theta functions in complex analysis and number theory // Surveys in Number Theory / Krishnaswami Alladi. — Springer-Verlag, 2008. — Т. 17. — С. 57–87. — (Developments in Mathematics). — ISBN 978-0-387-78509-7.
Bruno Schoeneberg.IX. Theta series // Elliptic modular functions. — Springer-Verlag, 1974. — Т. 203. — С. 203–226. — (Die Grundlehren der mathematischen Wissenschaften). — ISBN 3-540-06382-X.
Тюрин А. Н. Квантование, классическая и квантовая теория поля и тета-функции. — М., 2003.
Jonathan Borwein und Peter Borwein: π and the AGM: A study in Analytic Number Theory and Computational Complexity. Wiley-Interscience, 1987. pages 94–97.
Jonathan Borwein, Peter Borwein: Theta Functions and the Arithmetic-Geometric Mean Iteration. Ch. 2 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pages 33–61, 1987.
G. P. Young: Solution of Solvable Irreducible Quintic Equations, Without the Aid of a Resolvent Sextic. In: Amer. J. Math. Band 7, pages 170–177, 1885.
C. Runge: Über die auflösbaren Gleichungen von der Form. In: Acta Math. Volume 7, pages 173–186, 1885, doi:10.1007/BF02402200.
F. Brioschi: Sulla risoluzione delle equazioni del quinto grado: Hermite – Sur la résolution de l’Équation du cinquiéme degré Comptes rendus. N. 11. Mars. 1858. doi:10.1007/bf03197334 (zenodo.org).
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
Теорема Муавра — Лапласа — одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна , и — число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка к значению интеграла Лапласа.
В алгебре корень Бринга или ультрарадикал — это аналитическая функция , задающая единственный действительный корень многочлена . Иначе говоря, для любого верно, что
Эллиптические функции Якоби — это набор основных эллиптических функций комплексного переменного и вспомогательных тета-функций, которые имеют прямое отношение к некоторым прикладным задачам. Они также имеют полезные аналогии с тригонометрическими функциями, как показывает соответствующее обозначение для . Они не дают самый простой способ развить общую теорию, как замечено недавно: это может быть сделано на основе эллиптических функций Вейерштрасса. Эллиптические функции Якоби имеют в основном параллелограмме по два простых полюса и два простых нуля.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Функция ошибок — неэлементарная функция, возникающая в теории вероятностей, статистике и теории дифференциальных уравнений в частных производных. Она определяется как
.
Уравне́ние Ке́плера описывает движение тела по эллиптической орбите в задаче двух тел и имеет вид:
Теорема о равнораспределении кинетической энергии по степеням свободы, закон равнораспределения, теорема о равнораспределении — связывает температуру системы с её средней энергией в классической статистической механике. В первоначальном виде теорема утверждала, что при тепловом равновесии энергия разделена одинаково между её различными формами, например, средняя кинетическая энергия поступательного движения молекулы должна равняться средней кинетической энергии её вращательного движения.
Модифици́рованные фу́нкции Бе́сселя — это функции Бесселя от чисто мнимого аргумента.
Анато́лий Алексе́евич Карацу́ба — советский и российский математик. Создатель первого быстрого метода в истории математики — метода умножения больших чисел.
Тригамма-функция в математике является второй из полигамма-функций. Она обозначается и определяется как
В математике Дзета-функция Гурвица, названная в честь Адольфа Гурвица, — это одна из многочисленных дзета-функций, являющихся обобщениями дзета-функции Римана. Формально она может быть определена степенным рядом для комплексных аргументов s, при Re(s) > 1, и q, Re(q) > 0:
Решётка Е8, или решётка Коркина — Золотарёва, — корневая решётка группы Е8. Она реализует в размерности 8:
Максимально возможное контактное число;
Плотнейшую упаковку шаров.
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом. Если секущая плоскость проходит через центр сферы, то высота обоих сегментов равна радиусу сферы, и каждый из таких сферических сегментов называют полусферой.
Мера Малерадля многочлена с комплексными коэффициентами определяется как
Тройное произведение Якоби — это математическое тождество:
В математике эллиптическая модульная лямбда-функция является неэлементарной голоморфной функцией на верхней полуплоскости комплексных чисел. Эта функция является неизменной относительно конгруэнтной подгруппы Γ(2). Она описывается как главный модуль модулярной кривой X(2).
Постоя́нная Га́усса — математическая константа, которая определяется как величина, обратная среднему арифметико-геометрическому от единицы и квадратного корня из 2:
(последовательность A014549 в OEIS)
Потенциал Сазерленда — простая модель парного взаимодействия неполярных молекул, описывающая зависимость энергии взаимодействия двух частиц от расстояния между ними. Эта модель относительно реалистично передаёт свойства реального взаимодействия сферических неполярных молекул и поэтому широко используется в расчётах и при компьютерном моделировании. Впервые этот вид потенциала был предложен Уильямом Сазерлендом в 1893 году.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.