Тетра́эдр (др.-греч.τετράεδρον «четырёхгранник»[1] ← τέσσαρες / τέσσερες / τέτταρες / τέττορες / τέτορες «четыре» + ἕδρα «седалище, основание») — простейший многогранник, гранями которого являются четыре треугольника[2].
Тетраэдр является треугольной пирамидой при принятии любой из граней за основание. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр, у которого все грани — равносторонние треугольники, называется правильным. Правильный тетраэдр является одним из пяти правильных многогранников.
Параллельные плоскости, проходящие через три пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.
Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части[3]:216-217.
Бимедианы тетраэдра пересекаются в той же самой точке, что и медианы тетраэдра.
Бимедианами тетраэдра называют отрезки, соединяющие середины его скрещивающихся рёбер (не имеющих общих вершин).
Центры сфер, которые проходят через три вершины и инцентр, лежат на сфере, центр которой совпадает с центром описанной сферы.
Также это утверждение верно и для внешних инцентров.
Плоскости, которые проходят через середину ребра и перпендикулярны противоположному ребру,пересекаются в одной точке (ортоцентр).
Ортоцентр в симплексе определяется как пересечение гиперплоскостей, которые перпендикулярны ребру и проходят через центр тяжести противоположного элемента.
Центр сферы(F),которая проходит через центры тяжести граней тетраэдра, центр тяжести тетраэдра(M), центр описанной сферы(R) и ортоцентр (H) лежат на одной прямой. При этом .
Центр сферы (S) вписанный в дополнительный тетраэдр,центр сферы (N) вписанный в антидополнительный тетраэдр, центр тяжести тетраэдра (M) и центр вписанной сферы (I) лежат на одной прямой.
Пусть точка G1 делит отрезок соединяющий ортоцентр(H) и вершину 1 в отношении 1:2. Опустим перпендикуляр с точки G1 на грань противолежащей вершине 1. Перпендикуляр пересекает грань в точке W1. Точки G1 и W1 лежат на сфере (сфере Фейербаха), которая проходит через центры тяжести граней тетраэдра.
Сечение плоскостью, проходящей через середины четырёх рёбер тетраэдра, является параллелограммом.
Все грани его представляют собой равные между собой треугольники. Развёрткой равногранного тетраэдра является треугольник, разделённый тремя средними линиями на четыре равных треугольника. В равногранном тетраэдре основания высот, середины высот и точки пересечения высот граней лежат на поверхности одной сферы (сферы 12 точек) (Аналог окружности Эйлера для треугольника).
Свойства равногранного тетраэдра:
Все его грани равны (конгруэнтны).
Скрещивающиеся рёбра попарно равны.
Трёхгранные углы равны.
Противолежащие двугранные углы равны.
Два плоских угла, опирающихся на одно ребро, равны.
Сумма плоских углов при каждой вершине равна 180°.
Отрезки, соединяющие середины противоположных рёбер тетраэдра, равны.
Произведения косинусов противоположных двугранных углов равны.
Сумма квадратов площадей граней вчетверо меньше суммы квадратов произведений противоположных рёбер.
У ортоцентрического тетраэдра окружности 9 точек (окружности Эйлера) каждой грани принадлежат одной сфере (сфере 24 точек).
У ортоцентрического тетраэдра центры тяжести и точки пересечения высот граней, а также точки, делящие отрезки каждой высоты тетраэдра от вершины до точки пересечения высот в отношении 2:1, лежат на одной сфере (сфере 12 точек).
Прямоугольный тетраэдр
Все рёбра, прилежащие к одной из вершин, перпендикулярны между собой. Прямоугольный тетраэдр получается отсечением тетраэдра плоскостью от прямоугольного параллелепипеда.
Каркасный тетраэдр
Это тетраэдр, отвечающий любому из следующих условий[4]:
существует сфера, касающаяся всех рёбер,
суммы длин скрещивающихся рёбер равны,
суммы двугранных углов при противоположных рёбрах равны,
окружности, вписанные в грани, попарно касаются,
все четырёхугольники, получающиеся на развёртке тетраэдра, — описанные,
перпендикуляры, восставленные к граням из центров вписанных в них окружностей, пересекаются в одной точке.
Бивысоты равны. Бивысотами тетраэдра называют общие перпендикуляры к двум скрещивающимся его рёбрам (рёбрам, не имеющим общих вершин).
Проекция тетраэдра на плоскость, перпендикулярную любой бимедиане, есть ромб. Бимедианами тетраэдра называют отрезки, соединяющие середины его скрещивающихся рёбер (не имеющих общих вершин).
Выполняются соотношения: , где и , и , и — длины противоположных рёбер.
Для каждой пары противоположных рёбер тетраэдра плоскости, проведённые через одно из них и середину второго, перпендикулярны.
В описанный параллелепипед соразмерного тетраэдра можно вписать сферу.
Инцентрический тетраэдр
У этого типа отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке. Свойства инцентрического тетраэдра:
Отрезки, соединяющие центры тяжести граней тетраэдра с противоположными вершинами (медианы тетраэдра), всегда пересекаются в одной точке. Эта точка — центр тяжести тетраэдра.
Замечание. Если в последнем условии заменить центры тяжести граней на ортоцентры граней, то оно превратится в новое определение ортоцентрического тетраэдра. Если же заменить их на центры вписанных в грани окружностей, называемых иногда инцентрами, мы получим определение нового класса тетраэдров — инцентрических.
Отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.
Биссектрисы углов двух граней, проведённому к общему ребру этих граней, имеют общее основание.
Произведения длин противоположных рёбер равны.
Треугольник, образованный вторыми точками пересечения трёх рёбер, выходящих из одной вершины, с любой сферой, проходящей через три конца этих рёбер, является равносторонним.
Это равногранный тетраэдр, у которого все грани — правильные треугольники. Является одним из пяти платоновых тел.
Свойства правильного тетраэдра:
все рёбра тетраэдра равны между собой,
все грани тетраэдра равны между собой,
периметры и площади всех граней равны между собой.
Правильный тетраэдр является одновременно ортоцентрическим, каркасным, равногранным, инцентрическим и соразмерным.
Тетраэдр является правильным, если он принадлежит к двум любым видам тетраэдров из перечисленных: ортоцентрический, каркасный, инцентрический, соразмерный, равногранный.
Тетраэдр является правильным, если он является равногранным и принадлежит к одному из следующих видов тетраэдров: ортоцентрический, каркасный, инцентрический, соразмерный.
В правильный тетраэдр можно вписать октаэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
Правильный тетраэдр состоит из одного вписанного октаэдра (в центре) и четырёх тетраэдров (по вершинам), причём рёбра этих тетраэдров и октаэдра вдвое меньше рёбер правильного тетраэдра.
Правильный тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба.
Правильный тетраэдр можно вписать в додекаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами додекаэдра.
Эта формула имеет плоский аналог для площади треугольника в виде варианта формулы Герона через аналогичный определитель.
Объём тетраэдра через длины двух противоположных рёбер a и b, как скрещивающихся линий, которые удалены на расстояние h друг от друга и образуют друг с другом угол , находится по формуле:
Объём тетраэдра через длины трёх его рёбер a, b и c, выходящих из одной вершины и образующих между собой попарно соответственно плоские углы , находится по формуле[5]
где
Аналогом для плоскости последней формулы является формула площади треугольника через длины двух его сторон a и b, выходящих из одной вершины и образующих между собой угол :
Формулы тетраэдра в декартовых координатах в пространстве
Обозначения:
— координаты вершин тетраэдра.
Объём тетраэдра (с учётом знака):
.
Координаты центра тяжести (пересечение медиан):
Координаты центра вписанной сферы:
где — площадь грани, противолежащей первой вершине, — площадь грани, противолежащей второй вершине и так далее.
Соответственно уравнение вписанной сферы:
Уравнение вневписанной сферы, противолежащей первой вершине:
Уравнение вневписанной сферы, противолежащей первой и второй вершинам (количество таких сфер может варьироваться от нуля до трёх):
Уравнение описанной сферы:
Формулы тетраэдра в барицентрических координатах
Обозначения:
— барицентрические координаты.
Объём тетраэдра (с учётом знака): Пусть — координаты вершин тетраэдра.
Тогда
где — объем базисного тетраэдра.
Координаты центра тяжести (пересечение медиан):
Координаты центра вписанной сферы:
Координаты центра описанной сферы:
Расстояние между точками :
Пусть и так далее.
Тогда расстояние между двумя точками:
Уравнение плоскости по трём точкам:
Здесь и дальше будут приведённые координаты.
Уравнение сферы по центру и радиусу:
Уравнение плоскости по точке и вектору нормали:
Так как вектор это разность двух точек(начало и конца вектора), то
Сравнение формул треугольника и тетраэдра
Площадь(Объём)
, где — расстояние между вершинами 1 и 2
,
где — угол между гранями 1 и 2, и — площади граней, противолежащие вершинам 1 и 2
Длина(площадь) биссектрисы
Длина медианы
Радиус вписанной окружности(сферы)
Радиус описанной окружности(сферы)
, где — площадь треугольника со сторонами
Теорема косинусов
,
где — угол между гранями 1 и 2, и — площади граней, противолежащие вершинам 1 и 2, — алгебраическое дополнение элемента матрицы
Теорема синусов
,
где — площади граней, противолежащие вершинам 1, 2, 3, 4, , где — двугранные углы вершины.
Теорема о сумме углов треугольника(соотношение между двугранными углами тетраэдра)
,
где — угол между гранями 1 и 2
Расстояние между центрами вписанной и описанной окружностей (сфер)
,
где — площади граней, противолежащие вершинам 1, 2, 3, 4.
Другая запись выражения: где — расстояние между центром описанной сферы и центром сферы, проходящая через три вершины и инцентр.
Тетраэдр в неевклидовых пространствах
Объём неевклидовых тетраэдров
Существует множество формул нахождения объёма неевклидовых тетраэдров. Например, формула Деревнина — Медных[7] для гиперболического тетраэдра и формула Дж. Мураками[8] для сферического тетраэдра. Объём тетраэдра в сферическом пространстве и в пространстве Лобачевского, как правило, не выражается через элементарные функции.
Соотношение между двугранными углами тетраэдра
— для сферического тетраэдра.
— для гиперболического тетраэдра.
Где — матрица Грама для двугранных углов сферического и гиперболического тетраэдра.
— угол между гранями, противолежащими i и j вершине.
Теорема косинусов
— для сферического и гиперболического тетраэдра.
— для сферического тетраэдра.
— для гиперболического тетраэдра.
Где — матрица Грама для приведённых рёбер сферического тетраэдра.
— матрица Грама для приведённых рёбер гиперболического тетраэдра.
Другая запись выражения: , где нормали граней тетраэдра.
Или с координатами вершин тетраэдра: .
— для гиперболического тетраэдра.
Радиус вписанной сферы
—
для сферического тетраэдра.
Другая запись выражения:
,
где единичные радиус векторы вершин тетраэдра.
—
для гиперболического тетраэдра.
Расстояние между центрами вписанной и описанной сфер
— для сферического тетраэдра.
Формулы тетраэдра в барицентрических координатах
Координаты центра вписанной сферы:
— для сферического тетраэдра.
Координаты центра описанной сферы:
— для сферического тетраэдра.
Тетраэдры в микромире
Правильный тетраэдр образуется при sp3-гибридизации атомных орбиталей (их оси направлены в вершины правильного тетраэдра, а ядро центрального атома расположено в центре описанной сферы правильного тетраэдра), поэтому немало молекул, в которых такая гибридизация центрального атома имеет место, имеют вид этого многогранника.
Силикаты, в основе структур которых лежит кремнекислородный тетраэдр [SiO4]4-.
Тетраэдры в живой природе
Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.
Тетраэдры в технике
Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм,Стержни испытывают только продольные нагрузки.
Прямоугольный тетраэдр используется в оптике. Если грани, имеющие прямой угол, покрыть светоотражающим составом или весь тетраэдр выполнить из материала с сильным светопреломлением, чтобы возникал эффект полного внутреннего отражения, то свет, направленный в грань, противоположную вершине с прямыми углами, будет отражаться в том же направлении, откуда он пришёл. Это свойство используется для создания уголковых отражателей, катафотов.
Специа́льная тео́рия относи́тельности — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. Фактически СТО описывает геометрию четырёхмерного пространства-времени и основана на плоском пространстве Минковского. Обобщение СТО для сильных гравитационных полей называется общей теорией относительности.
Лемниска́та Берну́лли — плоская алгебраическая кривая. Определяется как геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.
Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка пересечения серединных перпендикуляров к сторонам многоугольника.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Диверге́нция — дифференциальный оператор, отображающий векторное поле на скалярное, который определяет, «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.
Тригонометрические тождества — математические выражения для тригонометрических функций, которые выполняются при всех значениях аргумента. В данной статье приведены только тождества с основными тригонометрическими функциями, но есть тождества и для редко используемых тригонометрических функций.
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Пло́скость — одно из фундаментальных понятий в геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. В тесной связи с плоскостью принято рассматривать принадлежащие ей точки и прямые; они также, как правило, вводятся как неопределяемые понятия, свойства которых задаются аксиоматически.
Параболические координаты — ортогональная система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
Поде́ра кривой относительно точки — некоторая кривая, составленная из оснований перпендикуляров, опущенных из данной точки на касательные к данной кривой.
Поля́рная систе́ма координа́т — система координат на плоскости, определяющаяся двумя полярными координатами и , которые связаны с декартовыми прямоугольными координатами и следующими выражениями:
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.
Треуго́льник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Диполя́рная, или дипо́льная, систе́ма координа́т — трёхмерная криволинейная ортогональная система координат, основанная на точечном (центральном) диполе, точнее, на его инвариантах преобразования координат.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.