Алгебраи́ческая тополо́гия — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов, а также поведение этих объектов под действием различных топологических операций.
Комбинато́рика — раздел математики, посвящённый решению задач, связанных с выбором и расположением элементов некоторого множества в соответствии с заданными правилами. Каждое такое правило определяет некоторую выборку из элементов исходного множества, которая называется комбинаторной конфигурацией. Простейшими примерами комбинаторных конфигураций являются перестановки, сочетания и размещения.
Теорема Бо́рсука — У́лама — классическая теорема алгебраической топологии, утверждающая, что всякая непрерывная функция, отображающая -мерную сферу в -мерное евклидово пространство для некоторой пары диаметрально противоположных точек имеет общее значение. Неформально утверждение известно как «теорема о температуре и давлении»: в любой момент времени на поверхности Земли найдутся антиподальные точки с равной температурой и равным давлением; одномерный случай обычно иллюстрируют двумя диаметрально противоположными точками экватора с равной температурой.
Лемма Шпернера — комбинаторный аналог теоремы Брауэра о неподвижной точке, один из основных результатов топологической комбинаторики. Утверждает, что при любой Шпернеровской раскраске вершин в триангуляции n-мерного симплекса найдётся ячейка триангуляции, вершины которой покрашены во все цвета. Первый результат подобного типа был доказан Эмануэлем Шпернером.
Математическая химия — раздел теоретической химии, область исследований, посвящённая новым применениям математики к химическим задачам. Основная область интересов — это математическое моделирование гипотетически возможных физико-химических и химических явлений и процессов, а также их зависимость от свойств атомов и структуры молекул. Математическая химия допускает построение моделей без привлечения квантовой механики. Критерием истины в математической химии являются математическое доказательство, вычислительный эксперимент и сравнение результатов с экспериментальными данными. Важнейшую роль в математической химии играет математическое моделирование с использованием компьютеров. В связи с этим математическую химию, в узком смысле, иногда называют компьютерной химией, которую не следует путать с вычислительной химией.
Топологический анализ данных — новая область теоретических исследований для задач анализа данных и компьютерного зрения.
История комбинаторики освещает развитие комбинаторики — раздела конечной математики, который исследует в основном различные способы выборки заданного числа m элементов из заданного конечного множества: размещения, сочетания, перестановки, а также перечисление и смежные проблемы. Начав с анализа головоломок и азартных игр, комбинаторика оказалась исключительно полезной для решения практических задач почти во всех разделах математики. Кроме того, комбинаторные методы оказались полезными в статистике, генетике, лингвистике и многих других науках.
Ласло Ловас — венгерский математик, известный работами по комбинаторике, за которые он был награждён многими престижными премиями.
Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или на этих структурах. Проблемы комбинаторной геометрии простираются от конкретных «предметно»-комбинаторных вопросов — замощения, упаковка кругов на плоскости, формула Пика — до вопросов общих и глубоких, таких как гипотеза Борсука, проблема Нелсона — Эрдёша — Хадвигера.
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Аддитивная комбинаторика — междисциплинарная область математики, изучающая взаимозависимость различных количественных интерпретаций понятия структурированности подмножества группы, а также аналогичные свойства производных от множества структур, использующихся при этих интерпретациях. Кроме того, аддитивная комбинаторика изучает структурированность в различных смыслах некоторых специфических множеств или классов множеств.
Тарас Евгеньевич Панов — российский математик, доктор физико-математических наук.
Конечное топологическое пространство — топологическое пространство, в котором существует лишь конечное число точек.
Граф C является накрывающим графом другого графа G, если имеется накрывающее отображение из множества вершин C в множество вершин G. Накрывающее отображение f является сюръекцией и локальным изоморфизмом — окрестность вершины v в C отображается биективно в окрестность f(v) в G.
Задача о разрезании ожерелья — это название серии задач из комбинаторики и теории меры. Задачу сформулировали и решили математики Нога Алон и Дуглас Б. Вест.
K-теория — математическая теория, изучающая кольца, порождённые векторными расслоениями над топологическими пространствами или схемами. В алгебраической топологии эта обобщённая теория когомологий называется топологической K-теорией. В алгебре и алгебраической геометрии соответствующий раздел называется алгебраической K-теорией. Также она играет важную роль в операторных алгебрах и её можно рассматривать как теорию определенных видов инвариантов больших матриц.
Лемма Такера — это комбинаторный аналог теоремы Борсука — Улама, названный именем Альберта У. Такера.
Топологический граф — представление графа на плоскости, в котором вершины графа представлены различными точками, а рёбра кривыми Жордана, соединяющими соответствующие пары точек. Точки, представляющие вершины графа, и дуги, представляющие рёбра, называются вершинами и рёбрами топологического графа. Обычно предполагается, что любые два ребра топологического графа пересекаются конечное число раз, при этом ни одно ребро не проходит через вершину и никакие два ребра не касаются друг друга. Топологический граф называется также «рисунком» графа.
При доказательстве комбинаторных теорем обычно признаются и используются несколько полезных комбинаторных правил, или комбинаторных принципов. Примеры:
- Правило сложения, правило умножения и принцип включения-исключения часто используются для целей перечисления.
- Принцип Дирихле часто устанавливает существование чего-либо или используется для определения минимального либо максимального количества чего-либо в дискретном контексте.
- Биективное доказательство используется, чтобы убедиться, что два множества имеют одинаковое количество элементов.
- Многие комбинаторные тождества возникают из метода двойного счёта или метода выделенного элемента.
- Производящие функции и рекуррентные соотношения — мощные инструменты, которые можно использовать для управления последовательностями, и они могут быть полезны при исследовании многих комбинаторных ситуаций.