Точка округления

Перейти к навигацииПерейти к поиску

Точка округления (круговая точка, омбилическая точка или омбилика) ― точка на гладкой регулярной поверхности в евклидовом пространстве, в которой нормальные кривизны по всем направлениям равны.

Название «омбилика» происходит от французского «ombilic», которое, в свою очередь, происходит от латинского «umbilicus» ― «пуп».

Точки округления и сеть линий кривизны поверхности вокруг них. В случае общего положения существуют три топологические различные типа особенности, часто называемые «лимон», «звезда» и «монстар»[1]

Свойства

В точке округления:

  • главные кривизны поверхности совпадают.
  • Первая квадратичная форма и вторая квадратичная форма поверхности пропорциональны.
  • любое касательное направление является главным направлением.
  • Соприкасающийся параболоид является параболоидом вращения.
  • Индикатриса Дюпена является окружностью.
  • Сеть линий кривизны (то есть линий, касающихся в каждой точке одного из главных направлений поверхности), имеет особенность[1].
  • Любая точка округления является либо эллиптической точкой поверхности (если главные кривизны не равны нулю, и следовательно, гауссова кривизна поверхности в данной точке положительная), либо так называемой плоской точкой округления (если главные кривизны равны нулю, и следовательно, гауссова кривизна и средняя кривизна поверхности в данной точке равны нулю). В первом случае в малой окрестности точки округления поверхность похожа на сферу, а во втором — на плоскость.

Примеры

Точки округления на трёхосном эллипсоиде

В евклидовом пространстве с метрикой :

  • Сфера целиком состоит из эллиптических точек округления.
  • Трёхосный эллипсоид (с попарно различными осями) имеет ровно четыре точки округления, все они эллиптические и относятся к типу «лимон».
  • Плоскость целиком состоит из плоских точек округления.
  • Обезьянье седло имеет изолированную плоскую точку округления в начале координат.

Гипотеза Каратеодори

Каратеодори высказал гипотезу, что на любой достаточно гладкой замкнутой выпуклой поверхности M в трёхмерном евклидовом пространстве существуют как минимум две точки округления. Эта гипотеза была впоследствии доказана при дополнительном предположении, что поверхность M аналитическая[2][3].

Обобщение

Пусть ― гладкое многообразие произвольной размерности в евклидовом пространстве большей размерности. Тогда в каждой точке определены собственных значений пары первой и второй квадратичных форм, заданных на касательном расслоении . Точка называется омбиликой, если в ней набор содержит хотя бы два совпадающих числа. Множество омбилик имеет коразмерность 2, то есть задается на двумя независимыми уравнениями.[4] Так, омбилические точки на поверхности общего положения изолированы (), а на трёхмерном многообразии общего положения они образуют кривую ().

Литература

  • Топоногов В. А. Дифференциальная геометрия кривых и поверхностей. — Физматкнига, 2012. — ISBN 9785891552135.
  • Рашевский П. К. Курс дифференциальной геометрии, — Любое издание.
  • Фиников С. П. Курс дифференциальной геометрии, — Любое издание.
  • Фиников С. П. Теория поверхностей, — Любое издание.
  • Porteous I.R. Geometric Differentiation for the intelligence of curves and surfaces — Cambridge University Press, Cambridge, 1994.
  • Struik D. J. Lectures on Classical Differential Geometry, — Addison Wesley Publ. Co., 1950. Reprinted by Dover Publ., Inc., 1988.

Примечания

  1. 1 2 Ремизов А. О. Многомерная конструкция Пуанкаре и особенности поднятых полей для неявных дифференциальных уравнений, ― СМФН, 19 (2006), 131—170.
  2. Иванов В. В. Аналитическая гипотеза Каратеодори // Сиб. матем. журн.. — 2002. — Т. 42. — С. 314—405. — doi:10.1023/A:1014797105633.
  3. Alexandrov V. A. Zbl 1056.53003 (англ.). Дата обращения: 13 октября 2014. Архивировано 19 октября 2014 года.
  4. Арнольд В. И. Математические методы классической механики, ― Любое издание. (Добавление 10. Кратности собственных частот и эллипсоиды, зависящие от параметров).