Пфаффианом кососимметричной матрицы называется некоторый многочлен от её элементов, квадрат которого равен определителю этой матрицы. Как и определитель, пфаффиан является ненулевым только для кососимметричных матриц размера , и в этом случае его степень равна n.
Едини́чная ма́трица — квадратная матрица размера (порядка) , элементы главной диагонали которой равны единице поля, а остальные равны нулю.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаётся скалярное произведение векторов в касательном пространстве. Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.
Диагональная матрица — квадратная матрица, все элементы которой, стоящие вне главной диагонали, равны нулю:
- .
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу , что .
Бло́чная (кле́точная) ма́трица — представление матрицы, при котором она рассекается вертикальными и горизонтальными линиями на прямоугольные части — блоки (клетки):
- ,
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Эрми́тово сопряжённая ма́трица — матрица с комплексными элементами, полученная из исходной матрицы транспонированием и заменой каждого элемента комплексно сопряжённым ему.
Гауссова кривизна — мера искривления поверхности в окрестности какой-либо её точки. Гауссова кривизна является объектом внутренней геометрии поверхностей, то есть она не изменяется при изометрических изгибаниях.
Каноническая форма Вейра — квадратная матрица удовлетворяющая определённым условиям, введена чешским математиком Эдуардом Вейром в 1885 году.
Разложение Шура — разложение матрицы на унитарную, верхнюю треугольную и обратную унитарную матрицы, названное именем Исая Шура.
Алгоритм вычисления собственных значений — алгоритм, позволяющий определить собственные значения и собственные векторы заданной матрицы. Создание эффективных и устойчивых алгоритмов для этой задачи является одной из ключевых задач вычислительной математики.
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется дефектной.
Симплектическая матрица — это матрица M размера 2n×2n с вещественными элементами, которая удовлетворяет условию
Круги Гершгорина — набор кругов на комплексной плоскости, определяемых по квадратной матрице, таких, что все собственные значения данной матрицы заведомо лежат внутри каких-то из этих кругов. Таким образом, они позволяют получить априорное ограничение на расположение собственных значений квадратной матрицы. Впервые их описание было опубликовано советским математиком Семёном Ароновичем Гершгориным в 1931 году.