Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики, как теоретическая механика, гидродинамика и теория упругости. Редакционная коллегия журнала Journal of Mathematical Physics определяет математическую физику как «применение математики к физическим задачам и разработка математических методов, подходящих для таких приложений и для формулировок физических теорий».
Гео́рг Фри́дрих Бе́рнхард Ри́ман — немецкий математик, механик и физик.
Специальные функции — встречающиеся в различных приложениях математики функции, которые не выражаются через элементарные функции. Специальные функции представляются в виде рядов или интегралов.
Существует три официальных способа подразделения математики.
Винче́нцо де Рикка́ти — итальянский математик, механик и физик, иностранный почётный член Петербургской АН с 17 января 1760 года. Известен как создатель теории гиперболических функций.
Валентин Константинович Иванов — российский математик, член-корреспондент РАН, специалист в области теории функций, некорректных задач математической физики, лауреат Ленинской премии (1966).
Мария Чибра́рио — известный итальянский математик, профессор (1947), член Национальной академии деи Линчеи. Автор около ста научных работ, посвященных теории дифференциальных уравнений в частных производных и смежным вопросам. Относится к числу наиболее известных женщин-математиков в мире.
Смешанные уравнения — класс дифференциальных уравнений в частных производных второго порядка, являющихся гиперболическими в одной области пространства переменных и эллиптическими — в другой. Эти области разделены линией или поверхностью, в точках которой которой уравнение относится к параболическому типу или не определено. Эта линия (поверхность) называется линией (поверхностью) смены типа или линией (поверхностью) вырождения.
Газ Трикоми — жидкая модельная среда, применяемая в аэродинамике для приближения поведения реального газа при движении тела со скоростью, близкой к скорости звука. Имеет уравнение состояния, которому в плоскости годографа соответствует уравнение Трикоми. Была введена в 1940-х годах в связи с необходимостью моделирования полётов на сверхзвуковых скоростях.
Ларс Вальтер Хёрмандер ; 24 января 1931, Мьельбю — 25 ноября 2012, Мальмё) — шведский математик, обладатель Филдсовской премии (1962) и премии Вольфа (1988) за работы по теории дифференциальных уравнений в частных производных.
Гарри Бейтмен — английский и американский математик, специалист по теории специальных функций, дифференциальным уравнениям, а также по математическим методам в теории электромагнетизма, оптики и гидродинамики.
Камиль Басирович Сабитов — математик, член-корреспондент АН РБ (2006), доктор физико-математических наук (1992), профессор (1993), заслуженный деятель науки РБ (1999), почетный работник высшего профессионального образования РФ (2001), отличник образования РБ (1996).
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределённый интеграл, определённый интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель не адекватна конкретному описываемому явлению, из существования решения реальной задачи не следует существование соответствующей математической задачи. Доказательство теорем существования необходимо перед решением различных математических задач, вроде вычисления интеграла или интегрирования дифференциального уравнения. Теоремы существования позволяют определить, существует ли вычисляемый интеграл и сколько решений имеет дифференциальное уравнение. Если удаётся доказать теорему существования, единственность решения и корректность самой постановки задачи, то это означает очень важный первый шаг в решении задачи.
Олег Игоревич Маричев — советский и американский математик, доктор физико-математических наук. Автор справочников по интегралам.
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
Борис Анисимович Бондаренко (1923-2017) - академик Академии наук Узбекистана, учёный в области вычислительной математики и дифференциальных уравнений.
Анато́лий Алекса́ндрович Ки́лбас — заведующий кафедрой теории функций механико-математического факультета БГУ, доктор физико-математических наук, профессор. Всемирно известный специалист в области дробного исчисления.
Любовь Ивановна Чибрикова — доктор физико-математических наук, профессор Казанского государственного университета, заслуженный деятель науки РФ (1997).
Список объектов, названных в честь французского математика XIX века Огюстена Луи Коши.
- Горизонт Коши
- Задача Коши — задача нахождения решения дифференциального уравнения, удовлетворяющего начальным условиям.
- Интеграл Коши — Лагранжа — интеграл уравнений движения идеальной жидкости в случае потенциальных течений.
- Интегральная теорема Коши — интеграл от аналитической функции по замкнутой кривой в односвязной области равен нулю.
- Интегральная формула Коши — соотношение для голоморфных функций комплексного переменного, связывающее значение функции в точке с её значениями на контуре, окружающем точку.
- Интегральный признак Коши — Маклорена — признак сходимости убывающего положительного числового ряда.
- Коши — небольшой ударный кратер на видимой стороне Луны.
- Критерий Коши равномерной сходимости несобственных интегралов.
- Критерий сходимости Коши — критерий сходимости числовых рядов.
- Лемма Коши — Фробениуса — классический результат комбинаторной теории групп, даёт выражение на число орбит в действии группы.
- Матрица Коши
- Матрица Коши — матрица, с помощью которых выражаются решения систем неоднородных дифференциальных уравнений.
- Неравенство Коши — Буняковского — обобщение неравенства треугольника, связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве.
- Неравенство Коши — соотношение среднего арифметического, среднего геометрического, среднего гармонического и среднего квадратического.
- Принцип Коши — Кантора — лемма о вложенных отрезках, доказывающая полноту множества вещественных чисел.
- Радикальный признак Коши — признак сходимости числового ряда.
- Распределение Коши — класс вероятностных распределений.
- Телескопический признак Коши — признак сходимости положительных числовых рядов.
- Тензор деформации Коши-Грина — тензор, который характеризует сжатие (растяжение) и изменение формы в каждой точке тела при деформации.
- Тензор напряжений Коши — тензор, описывающий механические напряжения в произвольной точке нагруженного тела при малых деформациях.
- Теоре́ма Больцано — Коши — если непрерывная функция, определённая на вещественном промежутке, принимает два значения, то она принимает и любое значение между ними.
- Теорема Коши о вычетах — даёт способ вычисления интеграла мероморфной функции по замкнутому контуру.
- Теорема Коши — Адамара о степенном ряде — оценка радиуса сходимости некоторых степенных рядов.
- Теорема Коши — Дэвенпорта в аддитивной комбинаторике: размер множества сумм двух множеств в группе вычетов никогда не оказывается существенно меньше, чем сумма их размеров.
- Теорема Коши — Ковалевской — теорема о существовании и единственности локального решения задачи Коши для дифференциального уравнения в частных производных.
- Теорема Коши о многогранниках — грани многогранника вместе с правилом склейки полностью определяют выпуклый многогранник.
- Теорема Коши о среднем значении — обобщение формулы конечных приращений.
- Теорема Коши — Пеано — теорема о существовании решения обыкновенного дифференциальное уравнения.
- Теорема Коши — Пуанкаре — обобщение на случай многомерного комплексного пространства интегральной теоремы Коши.
- Теорема Коши — если порядок конечной группы делится на простое число , то содержит элементы порядка .
- Уравнение Коши - Эйлера — вид линейного дифференциального уравнения, допускающего простой алгоритм решения.
- Условия Коши — Римана — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного.
- Формула Бине — Коши — теорема об определителе произведения двух матриц, которое является квадратной матрицей
- Фундаментальная последовательность Коши — последовательность точек метрического пространства такая, что для любого ненулевого заданного расстояния существует элемент последовательности, начиная с которого все элементы последовательности находятся друг от друга на расстоянии менее, чем заданное.
- Условие Коши — критерий сходимости фундаментальной последовательности Коши.
- Функциональное уравнение Коши
- Число Коши — критерий подобия в механике сплошных сред.