Специа́льная тео́рия относи́тельности — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. Фактически СТО описывает геометрию четырёхмерного пространства-времени и основана на плоском пространстве Минковского. Обобщение СТО для сильных гравитационных полей называется общей теорией относительности.
Теоре́ма си́нусов — теорема, устанавливающая зависимость между длинами сторон треугольника и величиной противолежащих им углов. Существуют два варианта теоремы; обычная теорема синусов:
Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка пересечения серединных перпендикуляров к сторонам многоугольника.
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Барицентри́ческие координа́ты — скалярные параметры, набор которых однозначно задаёт точку аффинного пространства.
Поворо́т (враще́ние) — движение плоскости или пространства, при котором по крайней мере одна точка остаётся неподвижной.
Ма́трицей поворо́та называется ортогональная матрица, которая используется для выполнения собственного ортогонального преобразования в евклидовом пространстве. При умножении любого вектора на матрицу поворота длина вектора сохраняется. Определитель матрицы поворота равен единице.
Пло́скость — одно из фундаментальных понятий в геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. В тесной связи с плоскостью принято рассматривать принадлежащие ей точки и прямые; они также, как правило, вводятся как неопределяемые понятия, свойства которых задаются аксиоматически.
Си́мволы Кристо́ффеля — коэффициенты координатного выражения аффинной связности, в частности, связности Леви-Чивиты. Названы в честь Эльвина Бруно Кристоффеля. Используются в дифференциальной геометрии, общей теории относительности и близких к ней теориях гравитации. Появляются в координатном выражении тензора кривизны. При этом сами символы тензорами не являются.
Треуго́льник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью.
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
В сферической тригонометрии, формула половины стороны применяется для решения сферических треугольников.
Дифференциа́льное уравне́ние Ри́мана — обобщение гипергеометрического уравнения, позволяющее получить регулярные сингулярные точки в любой точке сферы Римана. Названо в честь математика Бернхарда Римана.
Исторический термин «решение треугольников» обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника, а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере, на гиперболической плоскости и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Точка Брокара — одна из двух точек внутри треугольника, возникающих на пересечении отрезков, соединяющих вершины треугольника с соответствующими свободными вершинами треугольников, подобных данному треугольнику и построенных на его сторонах. Считаются замечательными точками треугольника, с их помощью строятся многие объекты геометрии треугольника.
Модель Удзавы — Лукаса — двухсекторная модель эндогенного экономического роста в условиях совершенной конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного внешними эффектами от накопления персонифицированного человеческого капитала в секторе образования. В модели показано, что решения экономических агентов об уровне образования могут быть источником устойчивого экономического роста наряду с научно-техническим прогрессом. Модель Удзавы — Лукаса вклад в изучение человеческого капитала и внешних эффектов от него. Первоначальная версия модели была разработана Хирофуми Удзавой в 1965 году, которая затем была существенно дополнена Робертом Лукасом в 1988 году.
Описанное коническое сечение или описанная коника для треугольника — это коническое сечение, проходящее через три вершины треугольника, а вписанное коническое сечение или вписанная коника — это вписанное в треугольник коническое сечение, т.е. касающееся сторон треугольника
Бидуга́ — гладкая плоская кривая, составленная из двух круговых дуг, меньших полной окружности. Одной из дуг может быть отрезок прямой. Бидуги были предложены для геометрического моделирования кривых с заданными граничными точками и касательными в них. В классе бидуг эта задача имеет целое семейство решений, и требует дополнительных условий для нахождения конкретных кривых. Таковыми могут быть задание кривизны или поворота одной из дуг, фиксированная длина кривой, требование минимизации скачка кривизны в точке сопряжения, и т. п.