Угол Вайнберга
У́гол Ва́йнберга, или у́гол сме́шивания сла́бого взаимоде́йствия, — параметр в теории электрослабого взаимодействия Вайнберга — Салама, обычно обозначающийся θW, один из свободных параметров Стандартной модели элементарных частиц. Это угол, на который спонтанное нарушение электрослабой симметрии поворачивает начальную плоскость нейтральных векторных бозонов W0
и B0, создавая в результате Z0-бозон и фотон.
Каждое из слагаемых оператора нейтрального тока представляет собой сумму векторного оператора с множителем и аксиального оператора с множителем , где — третья проекция так называемого слабого изотопического спина, — электрический заряд частицы, — угол Вайнберга. Угол определяет структуру нейтральных токов и связь между константами g и e слабого и электромагнитного взаимодействий соответственно[1]:
- .
Угол Вайнберга также задаёт отношение между массами W±- и Z0-бозонов[2]:
Угол Вайнберга может быть выражен через константы связи групп и (cлабый изотопический спин g и слабый гиперзаряд g′ соответственно):
- ; .
Значение θW является «бегущей константой», то есть зависит от передачи импульса Q в реакции, в которой оно измеряется. Эта зависимость является ключевым предсказанием теории электрослабых взаимодействий. Наиболее точные измерения выполнены в экспериментах на электрон-позитронных коллайдерах при значении Q = 91,2 ГэВ/c, соответствующем массе Z-бозона.
На практике более часто используется квадрат синуса угла Вайнберга, sin2 θW. На 2004 год наилучшая оценка этой величины sin2 θW = 0,23120 ± 0,00015 (при Q = 91,2 ГэВ/c, в рамках модифицированной схемы минимального вычитания[англ.]). Эксперименты по изучению несохранения чётности в атомных переходах (т.е. при околонулевой передаче импульса) дают значение угла Вайнберга с гораздо худшей точностью, не позволяющей определить зависимость бегущей константы от энергии. В эксперименте по изучению асимметрии мёллеровского рассеяния[англ.] при Q = 0,16 ГэВ/c установлено значение sin2 θW = 0,2397 ± 0,0013[3], достоверно отличающееся от вышеприведённого значения, полученного при высоких энергиях, и позволяющее установить зависимость угла Вайнберга от энергии.
В эксперименте LHCb на Большом адронном коллайдере в протон-протонных столкновениях при 7—8 ТэВ было получено значение эффективного угла Вайнберга sin2 θeff
W = 0,23142, однако передача импульса в этом измерении определяется энергией столкновения партонов, которая близка к массе Z-бозона.
Последняя редакция стандартного набора фундаментальных констант CODATA-2014 даёт значение
Следует отметить, что конкретное значение угла Вайнберга является не предсказанием Стандартной модели, а её свободным параметром. В настоящее время не существует общепризнанной теории, отвечающей на вопрос, почему угол Вайнберга имеет именно это значение, а не какое-либо иное.
См. также
Примечания
- ↑ Л. Б. Окунь. Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 552–556. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
- ↑ Окунь Л. Б. Лептоны и кварки (неопр.). — Главная редакция физико-математической литературы изд-ва «Наука», 1981.
- ↑ Anthony P. L. et al. Precision Measurement of the Weak Mixing Angle in Møller Scattering (англ.) // Phys. Rev. Lett. : journal. — American Physical Society, 2005. — Vol. 95, no. 8. — P. 081601. — doi:10.1103/PhysRevLett.95.081601. — . — arXiv:hep-ex/0504049. — PMID 16196849.
Ссылки
- Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. М.: Физматлит, 2006, 368 с, страницы 150—154. (djvu)
- C. Amsler (Particle Data Group) et al. Review of Particle Physics – Electroweak model and constraints on new physics (англ.) // Physics Letters B[англ.] : journal. — 2008. — Vol. 667, no. 1. — P. 1. — doi:10.1016/j.physletb.2008.07.018. — .
- E158: A Precision Measurement of the Weak Mixing Angle in Møller Scattering
- Q-weak: A Precision Test of the Standard Model and Determination of the Weak Charges of the Quarks through Parity-Violating Electron Scattering