Уравнение Баркера — уравнение, в неявном виде, определяющее зависимость между положением небесного тела (истинной аномалией) и временем, при движении по параболической орбите[1]. Данное уравнение широко применялось при изучении орбиткомет[2], орбиты которых имеют эксцентриситет близкий к единице. В настоящее время это уравнение находит применение в астродинамике[2]
Решение задачи двух тел дает уравнение траектории в полярных координатах в виде
где — параметр орбиты; — эксцентриситет орбиты; — истинная аномалия — угол между радиус-вектором текущего положения тела и направлением на перицентр. С другой стороны, справедлив второй закон Кеплера
где — константа площадей. Исходя из этих уравнений легко получить интеграл, связывающий время и истинную аномалию в точках и орбиты.
Способ вычисления данного интеграла зависит от величины эксцентриситета (см. Уравнение Кеплера). Для параболической траектории , в этом случае приходим к тривиальной цепочке преобразований
Учитывая, что параметр орбиты связан с константой площадей
где — гравитационный параметр центрального тела, а константа площадей, в случае параболического движения
где — расстояние до перицентра; — скорость в перицентре, при движении по параболе являющаяся параболической скоростью. Тогда, получаем для параметра орбиты и приходим к окончательному выражению
Теперь примем, что начальная точка траектории — перицентр, значит и преобразуем полученную зависимость к виду
где — среднее движение небесного тела. В итоге, получаем кубическое уравнение вида
где , — средняя аномалия орбиты небесного тела. Данное уравнение называют уравнением Баркера.
Это уравнение представляет собой неявную зависимость истинной аномалии от времени при движении небесного тела по параболической траектории.
Решение уравнения Баркера
Уравнение
является кубическим уравнением, записанным в канонической форме Кардано и имеет аналитическое решение. Средствами компьютерной алгебры легко получить это решение, содержащее один действительный и два комплексно-сопряженных корня
где
Физическому смыслу данной задачи соответствует только действительный корень, поэтому можно записать
Имея этот корень, можно вычислить синус и косинус истинной аномалии
по которым, с учетом их знака, определяется истинная аномалия
С. Херрик. Астродинамика. Том 1. — М.: Мир, 1976. — С. 318.
А. Рой. Движение по орбитам. — М.: Мир, 1981. — С. 544.
Похожие исследовательские статьи
Лемниска́та Берну́лли — плоская алгебраическая кривая. Определяется как геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.
Э́ллипс — замкнутая плоская кривая, исторически определённая как одно из конических сечений . Название эллипсу дал Аполлоний Пергский в своей «Конике».
Тригономе́трия — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии для вычисления одних элементов треугольника по данным о других его элементах.
Теле́сный у́гол — часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность. Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность. Обозначается телесный угол обычно буквой Ω.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Эллипсо́ид — поверхность в трёхмерном пространстве, полученная деформацией сферы вдоль трёх взаимно перпендикулярных осей.
Зако́ны Ке́плера — три эмпирических соотношения, установленные Иоганном Кеплером на основе длительных астрономических наблюдений Тихо Браге. Изложены Кеплером в работах, опубликованных между 1609 и 1619 годами. Описывают идеализированную гелиоцентрическую орбиту планеты.
Физи́ческий ма́ятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.
Поля́рная систе́ма координа́т — система координат на плоскости, определяющаяся двумя полярными координатами и , которые связаны с декартовыми прямоугольными координатами и следующими выражениями:
Эллиптические функции Якоби — это набор основных эллиптических функций комплексного переменного и вспомогательных тета-функций, которые имеют прямое отношение к некоторым прикладным задачам. Они также имеют полезные аналогии с тригонометрическими функциями, как показывает соответствующее обозначение для . Они не дают самый простой способ развить общую теорию, как замечено недавно: это может быть сделано на основе эллиптических функций Вейерштрасса. Эллиптические функции Якоби имеют в основном параллелограмме по два простых полюса и два простых нуля.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Редко используемые тригонометрические функции — функции угла, которые в настоящее время используются редко по сравнению с шестью основными тригонометрическими функциями. К ним относятся:
Уравне́ние Ке́плера описывает движение тела по эллиптической орбите в задаче двух тел и имеет вид:
Формула тангенса половинного угла — тригонометрическая формула, связывающая тангенс половинного угла с тригонометрическими функциями полного угла:
Суперэллипсоид — геометрическое тело, поперечными сечениями которого являются суперэллипсы с одним и тем же показателем степени r, а вертикальные сечения — суперэллипсы с одним и тем же показателем степени t. Некоторые суперэллипсоиды являются суперквадриками, однако ни одно из этих семейств не является подмножеством другого.
Гауссов пучок — пучок электромагнитного излучения, в котором распределение электрического поля и излучения в поперечном сечении хорошо аппроксимируется функцией Гаусса. Когерентный световой пучок с гауссовым распределением поля имеет фундаментальное значение в теории волновых пучков. Этот пучок называют основной модой в отличие от других мод более высокого порядка.
Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля.
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом. Если секущая плоскость проходит через центр сферы, то высота обоих сегментов равна радиусу сферы, и каждый из таких сферических сегментов называют полусферой.
Векторными сферическими гармониками являются векторные функции, преобразующиеся при вращениях системы координат так же, как скалярные сферические функции с теми же индексами, или определенные линейные комбинации таких функций.
В данной статье приведены точные алгебраические выражения для некоторых тригонометрических чисел. Такие выражения могут потребоваться, например, для приведения результатов выражений с тригонометрическими функциями в радикальную форму, что даёт возможность для дальнейшего упрощения.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.